Abstract

A silicon arrayed waveguide grating (AWG) with low channel crosstalk was demonstrated by using ultra-short parabolic tapers to connect the AWG’s free propagation regions and single-mode waveguides. The tapers satisfied the requirements of low-loss mode conversion and lower channel crosstalk from the coupling of neighboring waveguides in the AWGs. In this work, three different tapers, including parabolic tapers, linear tapers, and exponential tapers, were theoretically analyzed and experimentally investigated for a comparison of their effects when implemented in AWGs. The experimental results showed that the AWG with parabolic tapers had a crosstalk improvement up to 7.1 dB compared with the others. Based on the advantages of parabolic tapers, a 400-GHz 8 × 8 cyclic AWG with 2.4 dB on-chip loss and −17.6~-25.1 dB crosstalk was fabricated using a simple one-step etching process. Its performance was comparable with that of existing AWGs with bi-level tapers, which require complicated two-step etching fabrication processes.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(8) 9395-9403 (2014)

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers
Opt. Express 19(15) 14130-14136 (2011)

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen
Opt. Express 14(2) 664-669 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  2. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
    [Crossref] [PubMed]
  3. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17(16), 14063–14068 (2009).
    [Crossref] [PubMed]
  4. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [Crossref] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  6. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  7. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  8. D. Sun, Z. Hu, S. A. Majid, R. Vandusen, Q. Zheng, I. Hasan, N. G. Tarr, S. Bidnyk, and T. J. Hall, “Limitation Factor Analysis for Silicon-on-Insulator Waveguide Mach–Zehnder Interference-Based Electro-Optic Switch,” J. Lightwave Technol. 29(17), 2592–2600 (2011).
    [Crossref]
  9. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
    [Crossref]
  10. P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
    [Crossref]
  11. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  12. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
    [Crossref]
  13. X. Fu and D. Dai, “Ultra-small Si-nanowire-based 400 GHz-spacing 15×15 arrayed-waveguide grating router with micro bends,” IEEE Electron. Lett. 47(4), 266–268 (2011).
    [Crossref]
  14. K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
    [Crossref] [PubMed]
  15. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
    [Crossref]
  16. D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
    [Crossref]
  17. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  18. H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
    [Crossref]
  19. S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
    [Crossref]
  20. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [Crossref] [PubMed]
  21. J. Zou, X. Xia, G. Chen, T. Lang, and J. J. He, “Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects,” Opt. Lett. 39(7), 1834–1837 (2014).
    [Crossref] [PubMed]
  22. R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
    [Crossref]
  23. H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
    [Crossref]
  24. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” IEEE Electron. Lett. 32(18), 1661–1662 (1996).
    [Crossref]
  25. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
    [Crossref]
  26. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
    [Crossref]

2014 (4)

2013 (4)

2012 (1)

2011 (3)

2009 (1)

2008 (1)

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

2007 (2)

2006 (2)

2005 (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

1997 (1)

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

1996 (1)

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” IEEE Electron. Lett. 32(18), 1661–1662 (1996).
[Crossref]

1994 (1)

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

1993 (1)

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

1991 (1)

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[Crossref]

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Adar, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

Assefa, S.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Baets, R.

Bidnyk, S.

Bissessur, H.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[Crossref]

Bowers, J. E.

Cheben, P.

Chen, G.

Chetrit, Y.

Chu, T.

Ciftcioglu, B.

Cohen, O.

Coppinger, F.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

Dai, D.

X. Fu and D. Dai, “Ultra-small Si-nanowire-based 400 GHz-spacing 15×15 arrayed-waveguide grating router with micro bends,” IEEE Electron. Lett. 47(4), 266–268 (2011).
[Crossref]

Delâge, A.

Densmore, A.

Doany, F. E.

Dragone, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[Crossref]

Dumon, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[Crossref]

Fang, A. W.

Fu, X.

X. Fu and D. Dai, “Ultra-small Si-nanowire-based 400 GHz-spacing 15×15 arrayed-waveguide grating router with micro bends,” IEEE Electron. Lett. 47(4), 266–268 (2011).
[Crossref]

Fu, Y.

Fujioka, N.

Gaborit, F.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Gan, F.

Green, W. M. J.

Hall, T. J.

Hasan, I.

He, J. J.

Henry, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

Horikawa, T.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Horst, F.

Hu, Z.

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Ishida, K.

Ishitsuka, S.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Ishizaka, M.

Izhaky, N.

Jahnes, C. V.

Jalali, B.

P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

Janz, S.

Jeong, S. H.

Jones, R.

Kash, J. A.

Kim, D.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Kim, G.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Kistler, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Koshino, K.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Kurahashi, T.

Lamontagne, B.

Lang, T.

Lapointe, J.

Lee, B. G.

Lee, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Li, L.

Li, W.

Liao, L.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, A.

Majid, S. A.

Martin, B.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Milbrodt, M.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[Crossref]

Morito, K.

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Nguyen, H.

Nishi, H.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Nötzel, R.

Offrein, B. J.

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Ohtsuka, M.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Okamoto, K.

K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
[Crossref] [PubMed]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” IEEE Electron. Lett. 32(18), 1661–1662 (1996).
[Crossref]

Okayama, H.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Pagnod-Rossiaux, P.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Pang, A.

Paniccia, M.

Paniccia, M. J.

Park, H.

Pathak, S.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[Crossref]

Peyre, J. L.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Post, E.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Pyo, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Qi, M.

Renaud, M.

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

Roelkens, G.

Rubin, D.

Sano, T.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Sasaki, H.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Schmid, J. H.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schow, C. L.

Seki, M.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Sekiguchi, S.

Shank, S. M.

Sheng, Z.

Shimura, D.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Smit, M.

Song, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Sugita, A.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” IEEE Electron. Lett. 32(18), 1661–1662 (1996).
[Crossref]

Sugiyama, A.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Sun, D.

Takahashi, H.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Tanaka, S.

Tanaka, Y.

Tang, W.

Tarr, N. G.

Thourhout, D. V.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Toyama, M.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Trinh, P. D.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

Tsuchizawa, T.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vandusen, R.

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[Crossref]

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Vlasov, Y. A.

Waldron, P.

Wang, J.

Wang, X.

Wu, A.

Xia, X.

Xu, D. X.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yaegashi, H.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Yamada, K.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Yang, M.

Ye, T.

Yegnanarayanan, S.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

Yokoyama, N.

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

Zheng, Q.

Zou, J.

Zou, S.

Appl. Phys. Lett. (1)

P. Koonath, T. Indukuri, and B. Jalali, “Add–drop filters utilizing vertically-coupled micro-disk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

IEEE Electron. Lett. (5)

X. Fu and D. Dai, “Ultra-small Si-nanowire-based 400 GHz-spacing 15×15 arrayed-waveguide grating router with micro bends,” IEEE Electron. Lett. 47(4), 266–268 (2011).
[Crossref]

H. Okayama, D. Shimura, H. Takahashi, M. Seki, M. Toyama, T. Sano, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, S. Ishitsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, and H. Sasaki, “Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography,” IEEE Electron. Lett. 49(6), 410–412 (2013).
[Crossref]

H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J. L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” IEEE Electron. Lett. 30(4), 336–337 (1994).
[Crossref]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” IEEE Electron. Lett. 32(18), 1661–1662 (1996).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide of 70x60 µm2 size based on Si photonic wire waveguides,” IEEE Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[Crossref]

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[Crossref]

J. Lightwave Technol. (3)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (9)

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
[Crossref] [PubMed]

T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17(16), 14063–14068 (2009).
[Crossref] [PubMed]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[Crossref] [PubMed]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref] [PubMed]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of tapers used in an AWG. (a) The tapers between input/output waveguides and FPR. (b) Half of the AWG structure. (c) The tapers between FPR and arrayed waveguides.
Fig. 2
Fig. 2 (a) Top view of a parabolic taper. (b) Transmission of a parabolic taper as a function of the taper length. For comparison, linear- and exponential-type tapers are included.
Fig. 3
Fig. 3 (a) The tapers between the single-mode waveguides and the FPR. (b) Simulated results of crosstalk for the three types of taper.
Fig. 4
Fig. 4 Simulated spectra of the 4th channel of AWGs with parabolic tapers, linear tapers, and exponential tapers.
Fig. 5
Fig. 5 Detailed images of the fabricated AWGs. (a) Microscope picture of an AWG. Scan electron microscope (SEM) pictures of: (b) the free propagation region, (c) the parabolic tapers.
Fig. 6
Fig. 6 (a -c) The measured spectra of 8 output ports of 400 GHz cyclic AWG with parabolic, linear, and exponential tapers. (d) The crosstalk values of AWGs with parabolic, linear, and exponential tapers. The discrete data points show the crosstalk values of each channel in AWGs and the solid lines represent the average crosstalk values of each channel.
Fig. 7
Fig. 7 (a) The SEM picture of three taper groups placed on the edge of output FPR. Group 1 consists of three 2.9-μm-long parabolic tapers, group 2 consists of three 12-μm-long linear tapers, and group 3 consists of three 8.0-μm-long exponential tapers. (b -d) The spectra of the middle ports in group 1 −3.

Tables (1)

Tables Icon

Table 1 AWG parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ=α λ 0 2W n eff

Metrics