Abstract

Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calibration method for projector-camera-based telecentric fringe projection profilometry system

Haibo Liu, Huijing Lin, and Linshen Yao
Opt. Express 25(25) 31492-31508 (2017)

Flexible calibration method for telecentric fringe projection profilometry systems

Li Rao, Feipeng Da, Weiqi Kong, and Heming Huang
Opt. Express 24(2) 1222-1237 (2016)

Suppression of projector distortion in phase-measuring profilometry by projecting adaptive fringe patterns

Junzheng Peng, Xiaoli Liu, Dingnan Deng, Hongwei Guo, Zewei Cai, and Xiang Peng
Opt. Express 24(19) 21846-21860 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [Crossref]
  2. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  3. K. P. Proll, J. M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42(10), 1773–1778 (2003).
    [Crossref] [PubMed]
  4. S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
    [Crossref]
  5. K. P. Proll, J. M. Nivet, C. Voland, and H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39(34), 6430–6435 (2000).
    [Crossref] [PubMed]
  6. C. Zhang, P. S. Huang, and F. P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41(28), 5896–5904 (2002).
    [Crossref] [PubMed]
  7. H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
    [Crossref]
  8. http://www.opto-engineering.com/resources/telecentric-lenses-tutorial .
  9. D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Lasers Eng. 51(5), 538–541 (2013).
    [Crossref]
  10. Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
    [Crossref]
  11. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  12. F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
    [Crossref]
  13. J. S. Kim and T. Kanade, “Multiaperture telecentric lens for 3D reconstruction,” Opt. Lett. 36(7), 1050–1052 (2011).
    [Crossref] [PubMed]
  14. K. Haskamp, M. Kästner, and M. E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” SPIE Optical Metrology, München, S. 80821B (2011).
  15. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  16. J. M. Huntley and H. O. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32(17), 3047–3052 (1993).
    [Crossref] [PubMed]
  17. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
    [Crossref]
  18. S. Zhang and S. T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
    [Crossref]
  19. H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
    [Crossref]
  20. H. N. Yen and D. M. Tsai, “A fast full-field 3D measurement system for BGA coplanarity inspection,” Int. J. Adv. Manuf. Technol. 24, 132–139 (2004).

2014 (1)

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

2013 (1)

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Lasers Eng. 51(5), 538–541 (2013).
[Crossref]

2012 (1)

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

2011 (1)

2010 (3)

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

2009 (1)

S. Zhang and S. T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

2008 (1)

H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
[Crossref]

2006 (1)

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

2004 (1)

H. N. Yen and D. M. Tsai, “A fast full-field 3D measurement system for BGA coplanarity inspection,” Int. J. Adv. Manuf. Technol. 24, 132–139 (2004).

2003 (2)

K. P. Proll, J. M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42(10), 1773–1778 (2003).
[Crossref] [PubMed]

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

2002 (1)

2000 (3)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

K. P. Proll, J. M. Nivet, C. Voland, and H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39(34), 6430–6435 (2000).
[Crossref] [PubMed]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1993 (1)

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, Z.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Chiang, F. P.

Feng, S. K.

H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

He, X.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Huang, P. S.

Huntley, J. M.

Kanade, T.

Kim, J. S.

Körner, K.

Li, D.

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Lasers Eng. 51(5), 538–541 (2013).
[Crossref]

Liao, H.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Liu, H.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

Liu, W.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Muramatsu, T.

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

Nivet, J. M.

Proll, K. P.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Reichard, K.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

Ri, S.

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

Saka, M.

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

Saldner, H. O.

Shi, H.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Su, W. H.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

Tanaka, H.

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

Tian, J.

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Lasers Eng. 51(5), 538–541 (2013).
[Crossref]

Tiziani, H. J.

Tsai, D. M.

H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
[Crossref]

H. N. Yen and D. M. Tsai, “A fast full-field 3D measurement system for BGA coplanarity inspection,” Int. J. Adv. Manuf. Technol. 24, 132–139 (2004).

Voland, C.

Yau, S. T.

S. Zhang and S. T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

Yen, H. N.

H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
[Crossref]

H. N. Yen and D. M. Tsai, “A fast full-field 3D measurement system for BGA coplanarity inspection,” Int. J. Adv. Manuf. Technol. 24, 132–139 (2004).

Yin, S.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

Zhang, C.

Zhang, S.

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Zhang and S. T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Zhang, X.

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhu, F.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Adv. Packag. (1)

H. N. Yen, D. M. Tsai, and S. K. Feng, “Full-Field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Trans. Adv. Packag. 31(4), 830–840 (2008).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

H. N. Yen and D. M. Tsai, “A fast full-field 3D measurement system for BGA coplanarity inspection,” Int. J. Adv. Manuf. Technol. 24, 132–139 (2004).

Opt. Commun. (1)

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1-3), 65–80 (2003).
[Crossref]

Opt. Eng. (4)

S. Ri, T. Muramatsu, M. Saka, and H. Tanaka, “Fast and accurate shape measurement system utilizing the fringe projection method with a ferroelectric liquid-crystal-on-silicon microdisplay,” Opt. Eng. 51(8), 081506 (2012).
[Crossref]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

S. Zhang and S. T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

Opt. Lasers Eng. (5)

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Lasers Eng. 51(5), 538–541 (2013).
[Crossref]

Z. Chen, H. Liao, and X. Zhang, “Telecentric stereo micro-vision system: Calibration method and experiments,” Opt. Lasers Eng. 57, 82–92 (2014).
[Crossref]

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Opt. Lett. (1)

Other (2)

K. Haskamp, M. Kästner, and M. E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” SPIE Optical Metrology, München, S. 80821B (2011).

http://www.opto-engineering.com/resources/telecentric-lenses-tutorial .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The layout of the telecentric fringe projection system.
Fig. 2
Fig. 2 Data set generation of projector calibration flow chart.
Fig. 3
Fig. 3 Measurement of ceramic plate with precise circle pattern for accuracy evaluation. (a). Ceramic plate with 9 × 11 circles, with separation of 3 mm. (b). 3D reconstructed model of the ceramic plate.
Fig. 4
Fig. 4 Measured distance between neighboring circle markers of ceramic plate at the position of 1mm. (a). 90 data of measured distance along the X direction. (b). 88 data of measured distance along the Y direction.
Fig. 5
Fig. 5 3D shape measurement of BGA solder balls. (a) BGA chip with 548 solder balls, with interval of 0.8mm. (b) Captured fringe pattern of BGA solder balls. (c) Unwrapped phase map. (d) 3D reconstructed model of BGA solder balls. (e) Partially enlarged view of red circle in (d).

Tables (4)

Tables Icon

Table 1 Calibration results for the camera with telecentric lens

Tables Icon

Table 2 Calibration results for the projector with telecentric lens

Tables Icon

Table 3 Experimental results on the accurately positioned plate (Unit: mm)

Tables Icon

Table4 measurement results of solder balls interval

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I k (i,j)= I (i,j)+ I (i,j)cos[ϕ(i,j)+(k1)π/2]
ϕ(i,j)=arctan I 4 I 2 I 1 I 3
[ x u y u 1 ]=[ m/du 0 0 0 m/dv 0 0 0 1 ][ r 11 r 12 r 13 t x r 21 r 22 r 23 t y 0 0 0 1 ][ X w Y w Z w 1 ]
{ δ x = k 1 x u ( x u 2 + y u 2 )+ s 1 ( x u 2 + y u 2 ) δ y = k 1 y u ( x u 2 + y u 2 )+ s 2 ( x u 2 + y u 2 ) [ (u u 0 )du (v v 0 )dv ]=[ x u y u ]+[ δ x δ y ]
u i P = φ v ( O i C ) N v ×2π ×W, v i P = φ h ( O i C ) N h ×2π ×H
[ u C v C 1 ]=[ m C d u C 0 u 0 C 0 m C d v C v 0 C 0 0 1 ][ r 11 C r 12 C r 13 C t x C r 14 C r 15 C r 16 C t y C 0 0 0 1 ][ X w Y w Z w 1 ]
[ u P v P 1 ]=[ m P d u P 0 u 0 P 0 m P d v P v 0 P 0 0 1 ][ r 11 P r 12 P r 13 P t x P r 14 P r 15 P r 16 P t y P 0 0 0 1 ][ X w Y w Z w 1 ]
{ u C = u 0 C + m C ×( r 11 C X w + r 12 C Y w + r 13 C Z w + t x C ) d u c v C = v 0 C + m C ×( r 14 C X w + r 15 C Y w + r 16 C Z w + t y C ) d v C u P = u 0 P + m P ×( r 11 P X w + r 12 P Y w + r 13 P Z w + t x P ) d u P
u P = φ( u C , v C ) N×2π ×W

Metrics