Abstract

A dual cantilever device has been demonstrated which can operate as a force sensor or variable attenuator. The device is fabricated using physical micromachining techniques that do not require cleanroom class facilities. The response of the device to mechanical actuation is measured, and shown to be well described by conventional fiber optic angular misalignment theory. The device has the potential to be utilized within integrated optical components for sensors or attenuators. An array of devices was fabricated with potential for parallel operation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy

Gregor Schürmann, Wilfried Noell, Urs Staufer, Nico F. de Rooij, Rolf Eckert, Jan M. Freyland, and Harry Heinzelmann
Appl. Opt. 40(28) 5040-5045 (2001)

Integrated optic glass microcantilevers with Bragg grating interrogation

Lewis G. Carpenter, Christopher Holmes, Helen L. Rogers, Peter G.R. Smith, and James C. Gates
Opt. Express 18(22) 23296-23301 (2010)

Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator

Chengkuo Lee and Jayaraj Thillaigovindan
Appl. Opt. 48(10) 1797-1803 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
    [Crossref]
  2. E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
    [Crossref]
  3. K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
    [Crossref] [PubMed]
  4. T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
    [Crossref]
  5. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightwave Technol. 24(5), 2132–2138 (2006).
    [Crossref]
  6. L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
    [Crossref] [PubMed]
  7. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
    [Crossref]
  8. J. E. Ford, J. A. Walker, D. S. Greywall, and K. W. Goossen, “Micromechanical fiber-optic attenuator with 3 μs response,” J. Lightwave Technol. 16(9), 1663–1670 (1998).
    [Crossref]
  9. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref] [PubMed]
  10. B. J. Black and S. K. Mohanty, “Fiber-optic spanner,” Opt. Lett. 37(24), 5030–5032 (2012).
    [Crossref] [PubMed]
  11. M. Succo, “An Integrated Optical-Waveguide Chip for Measurement of Cold-Atom Clouds,” Ph.D. Thesis, Imperial College London (2011).
  12. T. Brown, “Harsh military environments and microelectromechanical (MEMS) devices,” in IEEE Proceedings on Sensors (Basel Switzerland) (IEEE, 2003), pp. 753–760.
  13. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  14. Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
    [Crossref]
  15. L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
    [Crossref]
  16. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
    [Crossref]
  17. R. M. Parker, “Optofluidic Bragg Grating Sensors For Chemical Detection,” Ph.D. Thesis, University of Southampton (2010).
  18. R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).
  19. C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
    [Crossref]
  20. B. G. Aitken and R. E. Youngman, “Borophosphosilicate glasses: properties and structure,” Phys. Chem. Glasses 47, 381–387 (2006).
  21. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
    [Crossref] [PubMed]
  22. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (CUP, 1998), p. 154.

2013 (2)

Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

2012 (1)

2011 (3)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

2010 (3)

2008 (1)

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

2006 (2)

2004 (1)

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

2002 (2)

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

1998 (2)

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

J. E. Ford, J. A. Walker, D. S. Greywall, and K. W. Goossen, “Micromechanical fiber-optic attenuator with 3 μs response,” J. Lightwave Technol. 16(9), 1663–1670 (1998).
[Crossref]

1993 (1)

Aitken, B. G.

B. G. Aitken and R. E. Youngman, “Borophosphosilicate glasses: properties and structure,” Phys. Chem. Glasses 47, 381–387 (2006).

Akhmadaliev, S.

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Ambran, S.

Askyuk, V.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Bachman, M.

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

Barber, B.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Bashir, R.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Bernal, M.-P.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bishop, D.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Black, B. J.

Boisen, A.

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Busto, V. J. C.

Carpenter, L. G.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
[Crossref] [PubMed]

Chen, F.

Constable, A.

Cooper, P. A.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Dohn, S.

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Dominguez, C.

Emmerson, G. D.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Ford, J. E.

Gates, J. C.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
[Crossref] [PubMed]

Gawith, C. B. E.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Giles, C. R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Goossen, K. W.

Greywall, D. S.

Grossel, M. C.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Holmes, C.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
[Crossref] [PubMed]

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Irimia, D.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Jang, J.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Jia, Y.

Keller, S. S.

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Kim, J.

Kip, D.

Lechuga, L. M.

Lee, J.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Li, G.-P.

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Mervis, J.

Mohanty, S. K.

Ollier, E.

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[Crossref]

Park, K.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Parker, R. M.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).

Plaza, J. A.

Prentiss, M.

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Robinson, J. P.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Rogers, H. L.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
[Crossref] [PubMed]

Ruel, R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Rüter, C. E.

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Schmid, S.

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Smith, P. G. R.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, and J. C. Gates, “Integrated optic glass microcantilevers with Bragg grating interrogation,” Opt. Express 18(22), 23296–23301 (2010).
[Crossref] [PubMed]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Stulz, L.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

Sturgis, J.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Tenje, M.

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Toner, M.

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Walker, J. A.

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Xu, T.

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

Youngman, R. E.

B. G. Aitken and R. E. Youngman, “Borophosphosilicate glasses: properties and structure,” Phys. Chem. Glasses 47, 381–387 (2006).

Zarinetchi, F.

Zeng, F.-G.

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

Zhou, S.

Zinoviev, K.

Electron. Lett. (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10(9), 1262–1264 (1998).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

C. Holmes, L. G. Carpenter, H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Quantifying the optical sensitivity of planar Bragg gratings in glass micro-cantilevers to physical deflection,” J. Micromech. Microeng. 21(3), 035014 (2011).
[Crossref]

J. Phys. D Appl. Phys. (2)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Lab Chip (1)

K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, “‘Living cantilever arrays’ for characterization of mass of single live cells in fluids,” Lab Chip 8(7), 1034–1041 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

B. G. Aitken and R. E. Youngman, “Borophosphosilicate glasses: properties and structure,” Phys. Chem. Glasses 47, 381–387 (2006).

Rep. Prog. Phys. (1)

A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74(3), 036101 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

T. Xu, M. Bachman, F.-G. Zeng, and G.-P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114(2-3), 176–182 (2004).
[Crossref]

Sensor Actuat. B Chem. (1)

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “A temperature-insensitive Bragg grating sensor-Using orthogonal polarisation modes for in situ temperature compensation,” Sensor Actuat. B Chem. 145, 428–432 (2010).

Other (4)

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (CUP, 1998), p. 154.

M. Succo, “An Integrated Optical-Waveguide Chip for Measurement of Cold-Atom Clouds,” Ph.D. Thesis, Imperial College London (2011).

T. Brown, “Harsh military environments and microelectromechanical (MEMS) devices,” in IEEE Proceedings on Sensors (Basel Switzerland) (IEEE, 2003), pp. 753–760.

R. M. Parker, “Optofluidic Bragg Grating Sensors For Chemical Detection,” Ph.D. Thesis, University of Southampton (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Shows a 3D visualization showing the concept of dual opposing cantilevers machined into silica-on-silicon. Each cantilever contains an optical waveguide. The cantilevers are produced using dicing technology and etching away silicon to release the silica structures.
Fig. 2
Fig. 2 a. The image shows an optical microscope (top-side) image of the glass cantilevers before etching. 7 parallel grooves are diced using a plunge method technique (labelled as A1-A7 on the image). The silicon substrate is observed in the middle of the grooves and highlights the crescent shape. A second channel (B) is diced at an angle of 8ᵒ from perpendicular to the previous grooves which was in a conventional non-plunge mode. Figure 2b shows the glass cantilevers after etching. The regions of exposed silicon are removed by the KOH etchant, resulting in the lighter coloured central regions. The overlaying optical cantilevers are essentially transparent but can be seen most clearly in the region of the central channel.
Fig. 3
Fig. 3 Image shows a 3D visualization of the crescent shaped plunge-cut illustrating that the silicon becomes exposed only in the central region of each cut. This is important as the silicon etches much faster with KOH, so it is this exposed region that undercuts the overlying adjacent silica to create the cantilevers.
Fig. 4
Fig. 4 SEM image of the etched cantilever device. Note that first two cantilevers at the right side of the image sustained damage during the etching / drying process, however, this enables a clear visualization of the side walls of the third cantilever (shown in the inset image). The deflection out of the plane occurs because of stress inherent in the layers due to their high consolidation temperature.
Fig. 5
Fig. 5 Profiles of cantilevers showing out-of-plane displacement without load (due to the release of intrinsic stress) Fig. 5a shows deflection of each cantilever measured with the Zescope optical profiler. The length mismatch results in differing maximum displacements. Figure 5b shows the same data but with the curves overlapped, effectively an isometric view of Fig. 5a. The shapes are very consistent with only a difference in final height between the curves.
Fig. 6
Fig. 6 a. Comsol simulation showing out-of-plane displacement following etch release (in microns). 6b The displacement cross-section through the pair of cantilevers most equal in length. The parameters of the simulation are listed in the text.
Fig. 7
Fig. 7 A schematic showing the locations of the waveguide and Bragg gratings in relation to the cantilevers. Red: Bragg gratings and waveguide. Blue: Cantilevers. The gratings are 1mm in length and separated by 1mm. The total cantilever section length is also approximately 1mm and only affects the 1595 nm grating. The total device size is 10mm × 20mm.
Fig. 8
Fig. 8 Optical setup used to characterize the reflection properties of the devices. A polariser aligned to a PM fiber ensures spectrally independent polarised source.
Fig. 9
Fig. 9 Reflection spectra taken after dicing but before etching. The data shows the absolute reflectivity calibrated against a known fiber end reflection. Analysis of the peaks shows a wavelength shift due to birefringence of 0.28 nm.
Fig. 10
Fig. 10 Showing the two possible types of actuation. The colour maps calculated in Comsol indicate the displacement of the cantilever from its rest state. The colour bar shows the displacement in microns.
Fig. 11
Fig. 11 Camera images showing physical actuation of the cantilevers with an optical fiber pushing down on the cantilever with different heights of actuation. An optical fiber was used as it is only 125 micron and provides a stiff small cross-section rod.
Fig. 12
Fig. 12 The measured TE spectra of the device in the rest state (blue), and a deflected state (red). Actuating the devices increases the reflectivity of Bragg gratings opposite to the coupling side. As can be seen it also increases the background level by approximately 10dB. The Bragg gratings labelled with ‘A’ are on the side of the device coupled to the optical fiber while those labelled ‘B’ are on the other side.
Fig. 13
Fig. 13 Plot showing the ratio of reflectivity from Bragg gratings on opposing sides of the dual cantilevers (relative reflectivity) versus the displacement of both cantilevers. The theoretical fit makes use of Eq. (1).
Fig. 14
Fig. 14 The relative reflectivity response of a single cantilever translation also showing a point of maximum coupling for the TE mode. It is however less symmetric which suggests that there is coupling to the fundamental mode through cladding modes and due to the lack of verticality of the receiving cantilever end facet. Scatter may also contribute to this asymmetry.
Fig. 15
Fig. 15 Transmission during double push actuation showing effect of immersion in oil n = 1.46. The total transmission is improved with oil as would be expected from reducing off scatter and Fresnel loss. The peak narrows because the output beam does not diffract as rapidly so the receiving fiber position becomes more critical.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α a ( dB )=4.34 ( π n l wθ λ 0 ) 2

Metrics