Abstract

We develop high-resolution optical coherence tomography (OCT) system with high-speed acousto-optic tunable lens. Stroboscopic pulsed illumination is used for the first time to perform time-resolved OCT imaging with acousto-optic tunable focusing. The operation of ultrahigh-speed tunable acousto-optic lens is demonstrated theoretically and experimentally. Focal position tuning at MHz frequency range is experimentally shown in the imaging system leading to OCT images with extended depth of focus. Imaging with active optical elements is helpful for improvement of photon collection efficiency, depth of focus and enhancement of the image quality.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid acousto-optic focus tuning for improvement of imaging performance in confocal microscopy [Invited]

Krzysztof Szulzycki, Viktoriya Savaryn, and Ireneusz Grulkowski
Appl. Opt. 57(10) C14-C18 (2018)

Ultrahigh speed spectral-domain optical coherence microscopy

Hsiang-Chieh Lee, Jonathan J. Liu, Yuri Sheikine, Aaron D. Aguirre, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 4(8) 1236-1254 (2013)

Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye

Ireneusz Grulkowski, Silvestre Manzanera, Lukasz Cwiklinski, Franciszek Sobczuk, Karol Karnowski, and Pablo Artal
Optica 5(1) 52-59 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref] [PubMed]
  3. C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
    [Crossref] [PubMed]
  4. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
    [PubMed]
  5. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  6. H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
    [Crossref] [PubMed]
  7. J. G. Fujimoto and W. Drexler, eds., Optical Coherence Tomography. Technology and Applications (Springer, 2008).
  8. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  9. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
    [Crossref]
  10. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
    [Crossref]
  11. J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
    [Crossref]
  12. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
    [Crossref]
  13. B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
    [Crossref]
  14. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [Crossref] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  16. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 12141–12155 (2011).
    [Crossref] [PubMed]
  17. D. Lorenser, C. Christian Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Opt. Lett. 39(3), 548–551 (2014).
    [Crossref] [PubMed]
  18. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
    [Crossref] [PubMed]
  19. Y.-K. Fuh and M.-X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013).
    [Crossref]
  20. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
    [Crossref]
  21. P. Meemon, K.-S. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008).
    [Crossref] [PubMed]
  22. C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
    [Crossref]
  23. J. Kang, H. Yu, and H. Chen, “Liquid tunable lens integrated with a rotational symmetric surface for long depth of focus,” Appl. Opt. 49(28), 5493–5500 (2010).
    [Crossref] [PubMed]
  24. M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
    [Crossref] [PubMed]
  25. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  26. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
    [Crossref] [PubMed]
  27. K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
    [Crossref] [PubMed]
  28. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
    [Crossref] [PubMed]
  29. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  30. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
    [PubMed]
  31. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  32. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
    [Crossref] [PubMed]
  33. I. Grulkowski and P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267(1), 14–19 (2006).
    [Crossref]
  34. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
    [Crossref] [PubMed]
  35. E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 033104 (2007).
    [Crossref]
  36. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46(23), 5870–5876 (2007).
    [Crossref] [PubMed]
  37. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008).
    [Crossref] [PubMed]
  38. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of optics (McGraw-Hill, 2001), Vol. 2.
  39. A. Korpel, Acousto-optics (CRC, 1996).
  40. I. Grulkowski and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154(1), 77–83 (2008).
    [Crossref]
  41. C. Koch and R. Reibold, (personal communication, 2007).
  42. R. Reibold and P. Kwiek, “Optical Near-field Investigation into the Raman-Nath and KML Regimes of Diffraction by Ultrasonic Waves,” Acta Acust. Acustica 70, 223–229 (1990).
  43. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004).
    [Crossref] [PubMed]
  44. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30(11), 1351–1353 (2005).
    [Crossref] [PubMed]
  45. J. Yan, A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Rapidly tunable acoustic gradient index lenses for pulsed imaging and laser processing,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, (Institute of Electrical and Electronics Engineers, 2009), 106–107.
    [Crossref]
  46. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett. 34(11), 1684–1686 (2009).
    [Crossref] [PubMed]
  47. M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102(6), 061113 (2013).
    [Crossref]

2014 (3)

2013 (9)

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

Y.-K. Fuh and M.-X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013).
[Crossref]

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102(6), 061113 (2013).
[Crossref]

2012 (2)

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).
[PubMed]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

J. Kang, H. Yu, and H. Chen, “Liquid tunable lens integrated with a rotational symmetric surface for long depth of focus,” Appl. Opt. 49(28), 5493–5500 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (5)

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008).
[Crossref] [PubMed]

I. Grulkowski and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154(1), 77–83 (2008).
[Crossref]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[Crossref]

P. Meemon, K.-S. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008).
[Crossref] [PubMed]

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

2007 (2)

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 033104 (2007).
[Crossref]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46(23), 5870–5876 (2007).
[Crossref] [PubMed]

2006 (4)

I. Grulkowski and P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267(1), 14–19 (2006).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

2005 (2)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30(11), 1351–1353 (2005).
[Crossref] [PubMed]

2004 (2)

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004).
[Crossref] [PubMed]

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

2002 (1)

1999 (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

1997 (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

R. Reibold and P. Kwiek, “Optical Near-field Investigation into the Raman-Nath and KML Regimes of Diffraction by Ultrasonic Waves,” Acta Acust. Acustica 70, 223–229 (1990).

Adie, S. G.

Aguirre, A. D.

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Ahmad, A.

Alex Vitkin, I.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102(6), 061113 (2013).
[Crossref]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref] [PubMed]

N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett. 34(11), 1684–1686 (2009).
[Crossref] [PubMed]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008).
[Crossref] [PubMed]

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 033104 (2007).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

Bachman, M.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Bachmann, A. H.

Barry, S.

Beaurepaire, E.

Biedermann, B. R.

Blatter, C.

Boccara, A. C.

Bonin, T.

Boppart, S. A.

Bouma, B.

Bower, A. J.

Cable, A. E.

Carney, P. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

Chen, H.-S.

Chen, Z.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

Cheng, S.

Cheng, Y.-S. L.

Christian Singe, C.

Cohen, D. W.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Connolly, J. L.

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Cuenca, R.

Curatolo, A.

David Dickensheets, L.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

de Boer, J.

de Boer, J. F.

de Groot, M.

Ding, Z.

Divetia, A.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Drexler, W.

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Dubois, A.

Duocastella, M.

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102(6), 061113 (2013).
[Crossref]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref] [PubMed]

Eigenwillig, C. M.

Fahrbach, F. O.

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fuh, Y.-K.

Y.-K. Fuh and M.-X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013).
[Crossref]

Fujimoto, J. G.

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Götzinger, E.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

I. Grulkowski and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154(1), 77–83 (2008).
[Crossref]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46(23), 5870–5876 (2007).
[Crossref] [PubMed]

I. Grulkowski and P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267(1), 14–19 (2006).
[Crossref]

Gwag, J. S.

Hattersley, S.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[Crossref]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Helmchen, F.

Heo, K. C.

Hillmann, D.

Hirsa, A. H.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Hitzenberger, C. K.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Holmes, J.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[Crossref]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[Crossref]

Hopkins, A. B.

Hsieh, T.-H.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Huisken, J.

Hüttmann, G.

Izatt, J. A.

Jabbour, J. M.

Jankowski, D.

Jayaraman, V.

Jiang, J.

Jiang, J. Y.

Jo, J. A.

Kang, J.

Koch, P.

Kumar, A.

Kwiek, P.

I. Grulkowski and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154(1), 77–83 (2008).
[Crossref]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46(23), 5870–5876 (2007).
[Crossref] [PubMed]

I. Grulkowski and P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267(1), 14–19 (2006).
[Crossref]

R. Reibold and P. Kwiek, “Optical Near-field Investigation into the Raman-Nath and KML Regimes of Diffraction by Ultrasonic Waves,” Acta Acust. Acustica 70, 223–229 (1990).

Kwon, J. H.

Lasser, T.

Lee, H.-C.

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Lee, K.-S.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Leitgeb, R. A.

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Li, G.-P.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, M.-X.

Y.-K. Fuh and M.-X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013).
[Crossref]

Lin, Y.-H.

Liu, J. J.

Liu, Y.-Z.

Lopez, C. A.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Lorenser, D.

Lührs, C.

Maggie Gordon, L.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Maitland, K. C.

Malik, B. H.

McLeod, E.

Meemon, P.

Mermillod-Blondin, A.

Mo, J.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Mondelblatt, A. E.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Moneron, G.

Murali, S.

Nelson, J. S.

Olivier, N.

Olsovsky, C.

Owen, G. M.

Phillip Himmer, A.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Pircher, M.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, B.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Radhakrishnan, H.

Reibold, R.

R. Reibold and P. Kwiek, “Optical Near-field Investigation into the Raman-Nath and KML Regimes of Diffraction by Ultrasonic Waves,” Acta Acust. Acustica 70, 223–229 (1990).

Ren, H.

Rolland, J.

Sampson, D. D.

Sattmann, H.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Schmid, B.

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sheikine, Y.

Shemonski, N. D.

Srinivasan, V. J.

Steinmann, L.

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, B.

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G.

Tsai, T.-H.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Victor Yang, X. D.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Villiger, M.

Voigt, F. F.

Wang, Y.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Wieser, W.

Wojtkowski, M.

Wright, J. M.

Yu, H.

Yu, S. H.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Zhang, J.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Zhao, Y.

Zhou, C.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Acta Acust. Acustica (1)

R. Reibold and P. Kwiek, “Optical Near-field Investigation into the Raman-Nath and KML Regimes of Diffraction by Ultrasonic Waves,” Acta Acust. Acustica 70, 223–229 (1990).

Appl. Opt. (5)

Appl. Phys. Lett. (2)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102(6), 061113 (2013).
[Crossref]

Biomed. Opt. Express (3)

Cancer Res. (1)

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[Crossref] [PubMed]

Eur. Phys. J. Spec. Top. (1)

I. Grulkowski and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154(1), 77–83 (2008).
[Crossref]

J. Appl. Phys. (1)

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 033104 (2007).
[Crossref]

J. Biomed. Opt. (2)

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Nat. Photonics (1)

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Opt. Commun. (4)

I. Grulkowski and P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267(1), 14–19 (2006).
[Crossref]

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Y.-K. Fuh and M.-X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013).
[Crossref]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Opt. Express (7)

Opt. Lett. (10)

G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30(11), 1351–1353 (2005).
[Crossref] [PubMed]

N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett. 34(11), 1684–1686 (2009).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref] [PubMed]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008).
[Crossref] [PubMed]

D. Lorenser, C. Christian Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Opt. Lett. 39(3), 548–551 (2014).
[Crossref] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

Proc. SPIE (2)

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[Crossref]

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (5)

J. G. Fujimoto and W. Drexler, eds., Optical Coherence Tomography. Technology and Applications (Springer, 2008).

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of optics (McGraw-Hill, 2001), Vol. 2.

A. Korpel, Acousto-optics (CRC, 1996).

J. Yan, A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Rapidly tunable acoustic gradient index lenses for pulsed imaging and laser processing,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, (Institute of Electrical and Electronics Engineers, 2009), 106–107.
[Crossref]

C. Koch and R. Reibold, (personal communication, 2007).

Supplementary Material (2)

» Media 1: MP4 (96 KB)     
» Media 2: MP4 (2468 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Geometry of acousto-optic interaction. (a) Scheme of the acousto-optic cell. The cell is composed of cylindrical transducer of the length L. Light beam passes along the axis of the transducer. (b) The numerical approach assumes dividing the acoustic medium into M layers, each being regarded as pure phase grating. (c) Vibration of the transducer generates standing ultrasonic wave in which concentration of ultrasound is observed at the axis (r = 0). Gaussian distribution of electric field amplitude and the distribution of acoustic pressure. (d) Light beam propagation in a single layer.
Fig. 2
Fig. 2 Experimental set-up. (a) Configuration for experimental verification of the operation of acousto-optic tunable lens. (b) Spectral / Fourier-domain OCT instrument with tunable lens. EOM – electro-optic intensity modulator, FC – fiber coupler, AOC – acousto-optic cylindrical cell, OL – offset lens, BP – beam profiler, FG – function generator, DDG – digital delay line, PD – high-speed photodetector, OSC – oscilloscope, DC – dispersion compensation, LSC – line-scan camera, COMP – computer. (c) Explanation of continuous and stroboscopic illumination schemes. Application of EOM and digital delay line allows for control of phase difference between light pulses and ultrasound as well as to adjust the width of light pulses.
Fig. 3
Fig. 3 Calibration of the acousto-optic cell (F = 1.042 MHz, λ = 810 nm). Normalized light intensity vs. voltage applied to the transducer.
Fig. 4
Fig. 4 Profiling of the light beam behind the acousto-optic tunable lens. Time-averaged horizontal sections of the light beam (left column – theory, central column – experiment). Time-averaged central depth profile of the light beam (right column). (a) Offset lens fOL = 40 mm; (b) offset lens 20x objective fOL = 10 mm.
Fig. 5
Fig. 5 Analysis of the depth of focus (DOF) extension introduced by the dynamic focusing. The calculations were performed using BPM. (a) Surface plot of the DOF behind the AOL with respect of Raman-Nath parameter v and focal length fOL of the offset lens. (b) Time-averaged axial profiles of the normalized light beam intensity for different values of Raman-Nath parameter and for fOL = 40 mm. DOF is defined as the FWHM of the axial intensity profile. (c) Dependence of the extracted DOF on Raman-Nath parameter for fOL = 40 mm. (d) Dependence of the extracted DOF on focal length of the offset lens for v = 10.
Fig. 6
Fig. 6 Dynamic focusing with acousto-optic tunable lens at the frequency F = 1.042 MHz. Maps of the evolution of the axial light intensity profile within the period T of ultrasound (top) and temporal changes of light intensity for particular planes indicated in the maps (bottom; lines – theory, dots – experiment). (a) Offset lens fOL = 40 mm; (b) offset lens 20x objective fOL = 10 mm.
Fig. 7
Fig. 7 Performance of the OCT system with acousto-optic tunable lens. Impact of acousto-optic lens operation on interference signal in OCT. (a) Dependence of the OCT signal (closed dots) and signal from the sample arm (open dots) on the Raman-Nath parameter for continuous and pulsed illumination. (b) Signal-to-noise ratio roll-offs for different ultrasound amplitudes (reference arm was moved). (c) OCT signal and sample arm signal vs. object mirror position for continuous illumination. (d) OCT signal and sample arm signal vs. object mirror position for different phases of pulsed (stroboscopic illumination). (e) Impact of pulse duration on the fringe wash-out.
Fig. 8
Fig. 8 OCT imaging with dynamic focusing. (a) Imaging of the stack of microscopic cover glasses. (b) Imaging of the elastomer phantom with titanium dioxide. Averaged depth profiles demonstrating increased light collection efficiency from selected depths during different phases of focus tuning (Media 1).
Fig. 9
Fig. 9 OCT imaging of the lime. Selected frames of the movie showing focal position tuning by stroboscopic illumination. The left cross-section shows the image without dynamic focusing. The right image is the composite cross-sectional image with extended DOF obtained by averaging different depth positions (Media 2).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p( r,t )=δp J 0 ( Kr )cos( Ωt ),
n( r,t )= n 0 +Δn( r,t )= n 0 +δn J 0 ( Kr )cos( Ωt ),
E( r )= E 0 e ( r/w ) 2 ,
Q v 0.2,
E ˜ ( f x , f y ,z+Δz )= E ˜ in ( f x , f y ,z )exp[ iΔz ( k n 0 ) 2 ( 2π ) 2 ( f x 2 + f y 2 ) ],
E out ( x,y,z+Δz )=E( x,y,z+Δz )exp[ ikΔn( r,t ) ].
v=kδnL.
1 f AOC ( t ) = K 2 v 2k cos( Ωt )= Q n 0 v 2L cos( Ωt ),
1 f AOL ( t ) = 1 f AOC + 1 f OL = 1 f OL + K 2 v 2k cos( Ωt ),
DOF 4k K 2 f OL 2 v 4 k 2 ( K f OL v ) 2 K 2 k f OL 2 v

Metrics