Abstract

The performance of cascaded in-line phase-preserving amplitude regeneration using nonlinear amplifying loop mirrors has been studied in numerical simulations. As an example of a spectrally efficient modulation format with two amplitude states and multiple phase states, the regeneration performance of a star-16QAM format, basically an 8PSK format with two amplitude levels, was evaluated. An increased robustness against amplified spontaneous emission and nonlinear phase noise was observed resulting in a significantly increased transmission distance.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Thomas Richter, Colja Schubert, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(22) 27077-27085 (2014)

All-optical tunable multilevel amplitude regeneration based on coherent wave mixing using a polarizer

Zahra Bakhtiari and Alexander A. Sawchuk
Opt. Express 23(8) 10533-10539 (2015)

Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs
Opt. Express 16(3) 1923-1928 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, High-Order Modulation for Optical Fiber Transmission, Springer Series in Optical Sciences, Springer, (2009).
  2. J. P. Gordon and L. F. Mollenauer, “Phase Noise in Photonic Communications Systems using Linear Amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  3. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  4. H. Kim, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
    [Crossref]
  5. J. Kakande, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” ECOC 2010 Turin, Italy, PD 3.3, (2010).
  6. M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide”, Proceedings of the Opto-electronics Communications Conference (OECC 2013, Kyoto, Japan) PDP paper PD2–3 (2013).
  7. M. Matsumoto, “Fiber-Based All-Optical Signal Regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
    [Crossref]
  8. P. Johannisson, G. Adolfsson, and M. Karlsson, “Suppression of Phase Error in Differential Phase-shift Keying Data by Amplitude Regeneration,” Opt. Lett. 31(10), 1385–1387 (2006).
    [Crossref] [PubMed]
  9. T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
    [Crossref] [PubMed]
  10. M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
    [Crossref]
  11. M. Sorokina, “Design of multilevel amplitude regenerative system,” Opt. Lett. 39(8), 2499–2502 (2014).
    [Crossref] [PubMed]

2014 (2)

2012 (1)

M. Matsumoto, “Fiber-Based All-Optical Signal Regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

2011 (1)

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

2006 (2)

2003 (1)

1990 (1)

Adolfsson, G.

Essiambre, R.-J.

Gordon, J. P.

Hierold, M.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Johannisson, P.

Karlsson, M.

Kim, H.

Leuchs, G.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Matsumoto, M.

M. Matsumoto, “Fiber-Based All-Optical Signal Regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

Mollenauer, L. F.

Onishchukov, G.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Richter, T.

Roethlingshoefer, T.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Schmauss, B.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Schubert, C.

Sorokina, M.

Sponsel, K.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Winzer, P. J.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Matsumoto, “Fiber-Based All-Optical Signal Regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Regeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (3)

Other (3)

M. Seimetz, High-Order Modulation for Optical Fiber Transmission, Springer Series in Optical Sciences, Springer, (2009).

J. Kakande, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” ECOC 2010 Turin, Italy, PD 3.3, (2010).

M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide”, Proceedings of the Opto-electronics Communications Conference (OECC 2013, Kyoto, Japan) PDP paper PD2–3 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of a NALM-based regenerator (left) and constellation diagram of a star-16QAM modulation format (right). OBPF – optical bandpass filter.

Fig. 2
Fig. 2

Transmission line (top) and simulated transmission line schemes (bottom): Tx –star-16QAM transmitter, ASE – injection of amplified spontaneous emission, Rx – coherent receiver.

Fig. 3
Fig. 3

Peak power transfer function (left) and power-phase transfer function (right) of regenerator cascade for different span numbers. First (blue) and second (red) plateau centers are marked.

Fig. 4
Fig. 4

Constellation diagrams of the star-16QAM after different spans for the reference (top) and regenerative transmission line (bottom) for 23 dB OSNR and 5 rad/span nonlinear phase shift. The receiver decision thresholds are marked with dotted lines and wrong detected symbols are colored in red.

Fig. 5
Fig. 5

Symbol error rate as a function of average nonlinear phase shift per span and input OSNR for the reference transmission line (top) and the regenerative transmission line (bottom) after different spans.

Fig. 6
Fig. 6

Transmission distance extension as a function of average nonlinear phase shift per span and input OSNR for SER of 1e−3 (threshold of forward error correction).

Metrics