Abstract

Monocentric lenses provide high-resolution wide field of view imaging onto a hemispherical image surface, which can be coupled to conventional focal planes using fiber-bundle image transfer. We show the design and characterization of a 2-glass concentric F/1.0 lens, and describe integration of 5 Mpixel 1.75µm pitch back-side illuminated color CMOS sensors with 2.5µm pitch fiber bundles, then show the fiber-coupled lens compares favorably in both resolution and light collection to a 10x larger conventional F/4 wide angle photographic lens. We describe assembly of the monocentric lens and 6 adjacent sensors with focus optomechanics into an extremely compact 30Mpixel panoramic imager with a 126° “letterbox” format field of view.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Folded monocentric imager with deformable mirror focus

Glenn M. Schuster, William M. Mellette, and Joseph E. Ford
Appl. Opt. 56(12) 3435-3444 (2017)

Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs

Igor Stamenov, Ilya P. Agurok, and Joseph E. Ford
Appl. Opt. 51(31) 7648-7661 (2012)

Image processing for cameras with fiber bundle image relay

Stephen J. Olivas, Ashkan Arianpour, Igor Stamenov, Rick Morrison, Ron A. Stack, Adam R. Johnson, Ilya P. Agurok, and Joseph E. Ford
Appl. Opt. 54(5) 1124-1137 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Sutton, “Panoramic photography,” Photon. J. 6, 184–188 (March 1860).
  2. “Spherical camera,” Popular Mechanic Magazine 99(3), 94–95 (H.H. Windsor, March 1953).
  3. J. A. Waidelich, Jr., “Spherical lens imaging device,” U.S. patent 3,166,623 (19. January 1965).
  4. T. S. Axelrod, N. J. Colella, and A. G. Ledebuhr, “The wide-field-of-view camera,” in Energy and Technology Review (Lawrence Livermore National Laboratory, 1988).
  5. J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
    [Crossref]
  6. C. Akerlof, M. Fatuzzo, B. Lee, R. Bionta, A. Ledebuhr, H. Park, S. Barthelmy, T. Cline, and N. Gehrels, “Gamma-ray optical counterpart search experiment (GROCSE),” in AIP Conf. Proc. 307, 633–637 (American Institute of Physics, 1994).
    [Crossref]
  7. A. Arianpour, I. Agurok, N. Motamedi, and J. Ford, “Enhanced field of view fiber-coupled image sensing,” in International Optical Design Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM2A.4.
    [Crossref]
  8. I. Stamenov, I. P. Agurok, and J. E. Ford, “Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs,” Appl. Opt. 51(31), 7648–7661 (2012).
    [Crossref] [PubMed]
  9. I. Stamenov, I. Agurok, and J. E. Ford, “Optimization of high-performance monocentric lenses,” Appl. Opt. 52(34), 8287–8304 (2013).
    [Crossref] [PubMed]
  10. J. J. Hancock, “The design, fabrication and calibration of a fiber filter spectrometer”, PhD dissertation, College of Optical Sciences, (The University of Arizona, 2012)
  11. S. Olivas, N. Nikzad, I. Stamenov, A. Arianpour, G. Schuster, N. Motamedi, W. Mellette, R. Stack, A. Johnson, R. Morrison, I. Agurok, and J. Ford, “Fiber bundle image relay for monocentric lenses,” in Computational Optical Sensing and Imaging 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper CTh1C.5.S.
  12. A. R. Johnson, J. Pessin, J. E. Ford, I. Stamenov, A. Arianpour, and R. A. Stack, “Optomechanical design with wide field of view fiber-coupled image systems”, to be presented at the 2014OSA Frontiers in Optics Meeting.
    [Crossref]
  13. B. G. Grant, Field Guide to Radiometry, SPIE Field Guides Vol. 23 (SPIE Press, 2011)
  14. I. Stamenov, S. Olivas, A. Arianpour, I. Agurok, A. Johnson, R. Stack, and J. Ford, “Broad-spectrum fiber-coupled monocentric lens imaging,” in International Optical Design Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM3B.5.

2013 (1)

2012 (1)

1995 (1)

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

1860 (1)

T. Sutton, “Panoramic photography,” Photon. J. 6, 184–188 (March 1860).

Agurok, I.

Agurok, I. P.

Ford, J. E.

Hills, R.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Kordas, J. F.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Ledebuhr, A. G.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Lewis, I. T.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Nielsen, D. P.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Park, H.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Pleasance, L. D.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Priest, R. E.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Shannon, M. J.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Stamenov, I.

Sutton, T.

T. Sutton, “Panoramic photography,” Photon. J. 6, 184–188 (March 1860).

Wilson, B. A.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Appl. Opt. (2)

Photon. J. (1)

T. Sutton, “Panoramic photography,” Photon. J. 6, 184–188 (March 1860).

Proc. SPIE (1)

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Other (10)

C. Akerlof, M. Fatuzzo, B. Lee, R. Bionta, A. Ledebuhr, H. Park, S. Barthelmy, T. Cline, and N. Gehrels, “Gamma-ray optical counterpart search experiment (GROCSE),” in AIP Conf. Proc. 307, 633–637 (American Institute of Physics, 1994).
[Crossref]

A. Arianpour, I. Agurok, N. Motamedi, and J. Ford, “Enhanced field of view fiber-coupled image sensing,” in International Optical Design Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM2A.4.
[Crossref]

J. J. Hancock, “The design, fabrication and calibration of a fiber filter spectrometer”, PhD dissertation, College of Optical Sciences, (The University of Arizona, 2012)

S. Olivas, N. Nikzad, I. Stamenov, A. Arianpour, G. Schuster, N. Motamedi, W. Mellette, R. Stack, A. Johnson, R. Morrison, I. Agurok, and J. Ford, “Fiber bundle image relay for monocentric lenses,” in Computational Optical Sensing and Imaging 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper CTh1C.5.S.

A. R. Johnson, J. Pessin, J. E. Ford, I. Stamenov, A. Arianpour, and R. A. Stack, “Optomechanical design with wide field of view fiber-coupled image systems”, to be presented at the 2014OSA Frontiers in Optics Meeting.
[Crossref]

B. G. Grant, Field Guide to Radiometry, SPIE Field Guides Vol. 23 (SPIE Press, 2011)

I. Stamenov, S. Olivas, A. Arianpour, I. Agurok, A. Johnson, R. Stack, and J. Ford, “Broad-spectrum fiber-coupled monocentric lens imaging,” in International Optical Design Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper IM3B.5.

“Spherical camera,” Popular Mechanic Magazine 99(3), 94–95 (H.H. Windsor, March 1953).

J. A. Waidelich, Jr., “Spherical lens imaging device,” U.S. patent 3,166,623 (19. January 1965).

T. S. Axelrod, N. J. Colella, and A. G. Ledebuhr, “The wide-field-of-view camera,” in Energy and Technology Review (Lawrence Livermore National Laboratory, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Possible geometries of the panoramic fiber-coupled monocentric imager with (a) single straight fiber bundle, (b) single curved fiber bundle and (c) multiple straight fiber bundles

Fig. 2
Fig. 2

Two-glass symmetric (2GS) f = 12mm 470-650nm F/1.7 monocentric lens design layout (top row) with the FFT MTF performance curves, and a photograph of the fabricated F/1.35 prototype. Increasing aperture (bottom row) improves light collection at the expense of a spot size and MTF performance. For larger apertures, Huygens MTF curves are shown. In the top right corner of the MTF graphs the lens entrance pupil is shown, as observed from the front. The object is at infinity. Moving to 1m and refocusing does not significantly change the curves.

Fig. 3
Fig. 3

Experimental confirmation of monocentric lens focusing capability. Axial translation of the center ball lens maintains a fixed radius hemispherical image of a flat object in focus (0.5m and 1.0m conjugates shown). Three apochromatic microscope objectives were used for simultaneous relay imaging at three different field angles.

Fig. 4
Fig. 4

Commercial focal plane integration with the fiber bundle. (a) cross section of OV5653 wafer-fabricated CMOS sensor, (b) sensor with cover glass removed; (c, and d) shaped glass fiber bundle output and input faces, ready to be attached to CMOS sensor and meniscus lens.

Fig. 5
Fig. 5

Assembled fiber-coupled OV5653 sensor, which was then cross-sectioned by diamond saw to inspect adhesive thickness and uniformity. Optical micrograph (center) and SEM measurement (right) of the fiber bundle/sensor interface reveals the optical adhesive layer was less than 2μm thick.

Fig. 6
Fig. 6

White light impulse response of the two-glass monocentric (a) lens only, measured with a Keyence VHX 1000 microscope and (b) the lens with the fiber-coupled Omnivision OV5653 1.75μm sensor attached to it.

Fig. 7
Fig. 7

Fiber-coupled image transfer effect on visible spectrum (LED illumination) MTF lens performance of the fabricated 2GS monocentric imager prototype. Top row: performance of glass monocentric objective lens only. Center row: objective with the fiber-bundle in oil contact with the mounting meniscus. Bottom row: single 5Mpixel sensor fiber-coupled system.

Fig. 8
Fig. 8

Side-by-side lens −60° off-axis performance comparison: conventional wide-angle vs fiber-coupled monocentric lens. In both cases partial field of view was sensed by the Omnivision OV5653 1.75μm 5Mpixel CMOS sensor. Canon lens suffers from distortion and strong chromatic aberration. The fiber-coupled monocentric lens has a 4x increase in sensitivity and 10x reduction in volume.

Fig. 9
Fig. 9

Single row 30Mpixel fiber-coupled monocentric imager CAD models of (a) the exploded imager system showing 2GS monocentric lens, electronic focusing mechanism and fiber coupled Omnivision sensors forming the seamless array for 126°x16° FOV curved image sensing and (b) as built assembly of the integrated imager system with manual focusing option.

Fig. 10
Fig. 10

Comparison of the conventional DSLR Canon camera with wide-angle lens to fiber-coupled monocentric camera. On the right: photo of the laboratory characterization system.

Fig. 11
Fig. 11

Raw unprocessed image data acquired with the monocentric fiber-coupled prototype. Vignetting, field gaps, fiber bundle imperfections and moiré patterns are visible in the image.

Fig. 12
Fig. 12

Indoors comparison photos of the performance between Canon EOS 5D Mark II DSLR camera with Canon 8-15mm F/4 fisheye lens and the 2GS fiber-coupled F/1.0 monocentric prototype. Canon photo is cropped to match the prototype’s letterbox 8:1 field of view.

Tables (1)

Tables Icon

Table 1 Optical prescription of the 470-650nm F/1.7 f = 12mm 120° 2GS monocentric lens prototype

Metrics