Abstract

Intensity stability and wavelength correlations of near-infrared supercontinuum generation are studied in all-normal flattened dispersion, all-solid soft glass photonic crystal fiber. We use dispersive Fourier transformation method to measure shot-to-shot resolved spectra under pumping from a sub-picosecond, fiber-based chirped pulse amplification (CPA) system. For the first time to our knowledge, we demonstrate how unconverted radiation from pump, propagating in the photonic cladding of the fiber, improves the measured degree of coherence in the spectrum and influences its wavelength correlation by seeding of multiple four-wave-mixing / Raman scattering components. The presented results suggest a convenient and simple way of stabilizing of shot-to-shot coherence in sub-picosecond fiber laser pumped, normal-dispersion supercontinuum sources by direct, pump-related seeding.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum generation in soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Alexander Heidt, and Ryszard Buczyński
Photon. Res. 5(6) 710-727 (2017)

Limits of coherent supercontinuum generation in normal dispersion fibers

Alexander M. Heidt, James S. Feehan, Jonathan H. V. Price, and Thomas Feurer
J. Opt. Soc. Am. B 34(4) 764-775 (2017)

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [Crossref]
  2. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).
  3. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  4. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  5. X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
    [Crossref] [PubMed]
  6. A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
    [Crossref]
  7. N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
    [Crossref] [PubMed]
  8. N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
    [Crossref]
  9. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
    [Crossref]
  10. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
    [Crossref] [PubMed]
  11. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  12. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  13. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
    [Crossref] [PubMed]
  14. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
    [Crossref] [PubMed]
  15. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
    [Crossref]
  16. “Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable,” Recommendation ITU-T G.655 (2009).
  17. R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  18. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [Crossref]
  19. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
    [Crossref]
  20. J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fiber Optics Overview, Chap. 3 in Supercontinuum Generation in Optical Fibers, Dudley J M, Taylor R, Cambridge University Press (2010).
  21. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [Crossref] [PubMed]
  22. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010).
    [Crossref] [PubMed]
  23. F. Vanholsbeeck, P. Emplit, and S. Coen, “Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain,” Opt. Lett. 28(20), 1960–1962 (2003).
    [Crossref] [PubMed]
  24. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23(8), 1692–1699 (2006).
    [Crossref]
  25. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20(20), 22886–22894 (2012).
    [Crossref] [PubMed]
  26. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
    [Crossref] [PubMed]
  27. Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22(10), 11849–11860 (2014).
    [Crossref] [PubMed]

2014 (6)

2013 (6)

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref] [PubMed]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

2012 (5)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20(20), 22886–22894 (2012).
[Crossref] [PubMed]

2011 (2)

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (1)

2007 (1)

2006 (1)

2003 (1)

Aalto, A.

Abramski, K. M.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Agger, C.

Akhmediev, N.

N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

Alam, S.-U.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Bang, O.

Bartelt, H.

Ben Salem, A.

Bosman, G. W.

Brunel, P.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Buczynski, R.

Chen, K.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Chen, W.

Cimek, J.

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Coen, S.

Combes, Y.

Couderc, V.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Cremien, D.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Dias, F.

Dudley, J. M.

N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref] [PubMed]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Dupont, S.

Emplit, P.

Feng, X.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Finot, C.

Frosz, M. H.

Gao, J.

Gao, W.

Genty, G.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Godin, T.

Hartung, A.

Heidt, A.

Heidt, A. M.

Hilaire, S.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Horak, P.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Hu, L.

Huss, G.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Ibsen, M.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Kaczmarek, P.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Keiding, S. R.

Kibler, B.

Klimczak, M.

Krok, P.

Krzempek, K.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Kujawa, I.

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Labruyère, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Larger, L.

Larsen, C.

Ledroit, S.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Leproux, P.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Li, J.

Li, X.

Liao, M.

Liu, Y.

Loh, W. H.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Luo, H.

Lyngsø, J. K.

Martynkien, T.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Merolla, J.-M.

Møller, U.

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20(20), 22886–22894 (2012).
[Crossref] [PubMed]

Moselund, P. M.

Mou, C.

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Nérin, P.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Nguyen, D. M.

Nishizawa, N.

Pasternak, I.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Petersen, C.

Provost, L.

Pysz, D.

Qiu, Y.

Radzewicz, C.

Ren, Z.

Richardson, D. J.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Rohwer, E. G.

Rongeat, N.

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Schwoerer, H.

Shi, J.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Siwicki, B.

Skibinski, P.

Sobon, G.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Solli, D. R.

N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

Sørensen, S. T.

Sørensen, T.

Sotor, J.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Steffensen, H.

Stepien, R.

Strupinski, W.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Sun, Z.

Sylvestre, T.

Takayanagi, J.

Teh, P. S.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

Thøgersen, J.

Thomsen, C. L.

Toenger, S.

Toivonen, J.

Tonello, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Tsia, K.

Turitsyn, S. K.

Vanholsbeeck, F.

Wabnitz, S.

Wetzel, B.

Wong, K. K. Y.

Xu, Y.

Xue, T.

Yan, Z.

Zghal, M.

Zhang, L.

Zhang, Z.

Cytometry A (1)

N. Rongeat, P. Leproux, V. Couderc, P. Brunel, S. Ledroit, D. Cremien, S. Hilaire, G. Huss, and P. Nérin, “Flow cytometer based on triggered supercontinuum laser illumination,” Cytometry A 81(7), 611–617 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 2011–3461 (2011).

J. Opt. (1)

N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (1)

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Nat. Photonics (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Opt. Eng. (1)

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (9)

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22(10), 11849–11860 (2014).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
[Crossref] [PubMed]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20(20), 22886–22894 (2012).
[Crossref] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref] [PubMed]

A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010).
[Crossref] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (1)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012), doi:.
[Crossref] [PubMed]

Other (2)

“Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable,” Recommendation ITU-T G.655 (2009).

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fiber Optics Overview, Chap. 3 in Supercontinuum Generation in Optical Fibers, Dudley J M, Taylor R, Cambridge University Press (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of dispersive Fourier transform shot-to-shot resolved supercontinuum measurements, inset with photographs of OSA and oscilloscope screens with measured traces.
Fig. 2
Fig. 2 Time-wavelength dependence computed using Eq. (3) and used for wavelength mapping of measured DFT traces.
Fig. 3
Fig. 3 Measured and calculated dispersion of the PCF; inset: SEM images of the PCF’s all-solid glass photonic lattice.
Fig. 4
Fig. 4 Left: measured and simulated supercontinuum spectrum under pumping with 75 fs pulses centered at 1550 nm, shown with measured pump source spectrum [4]. Right: numerically generated spectral correlation map.
Fig. 5
Fig. 5 a) Measured Raman scattering spectrum of F2 glass in the fiber core, b) calculated temporal Raman response, used in modelling.
Fig. 6
Fig. 6 a) Supercontinuum spectrum measured in a 17 cm long PCF before and after the stretching fiber (G.655, 10 km); b) Fragment of recorded oscilloscope trace showing stretched temporal envelopes of individual SC pulses.
Fig. 7
Fig. 7 Measured and simulated SC spectra and SNR for the DFT and numerical data sets.
Fig. 8
Fig. 8 Degree of coherence of spectrum obtained from DFT measurement and from simulation.
Fig. 9
Fig. 9 Wavelength correlation maps calculated from experimental (a) and numerical (b) data sets.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| g 12 ( 1 ) ( λ, t 1 t 2 =0 ) |=| E 1 * ( λ, t 1 ) E 2 ( λ, t 2 ) | E 1 ( λ, t 1 ) | 2 | E 2 ( λ, t 2 ) | 2 |
ρ( λ 1 , λ 2 )=| I( λ 1 )I( λ 2 ) I( λ 1 ) I( λ 2 ) ( I 2 ( λ 1 ) I( λ 1 ) 2 )( I 2 ( λ 2 ) I( λ 2 ) 2 ) |
T( ω )= m=1 β m+1 z m! ( ω ω 0 ) m
h R ( T )= cθ( T ) π n 2 ω pR f R 0 g R ( Ω )sin( ΩT )dΩ

Metrics