Abstract

Using two most abundant materials in nature: silicon and aluminum, spectral selective perfect light absorption in single layer silicon films on aluminum surface is demonstrated. Perfect light absorption is achieved due to the critical coupling of incident optical wave to the second order resonance mode of the optical cavity made of a thin silicon film on aluminum surface. Spectral selective perfect light absorption results in different optical colors corresponding to different thicknesses of silicon films. The device colors do not change when viewing from large angles with respect to the surface normal. Perfect absorption wavelength can be tuned over a wide wavelength range over 70 nm by thermal annealing. This new technology, which is low cost and compatible with silicon technology platform, paves the way for many applications such as optical color filters and wavelength selective photodetectors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

Seyed Sadreddin Mirshafieyan, Ting S. Luk, and Junpeng Guo
Opt. Mater. Express 6(4) 1032-1042 (2016)

Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities

Jinnan Chen, Junpeng Guo, and Liang-Yao Chen
Opt. Mater. Express 6(12) 3804-3813 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  2. M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
    [Crossref]
  3. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
    [Crossref] [PubMed]
  4. X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
    [Crossref]
  5. C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
    [Crossref] [PubMed]
  6. E. Almpanis and N. Papanikolaou, “Designing photonic structures of nanosphere arrays on reflectors for total absorption,” J. Appl. Phys. 114(8), 083106 (2013).
    [Crossref]
  7. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  8. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  9. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  10. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  11. J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  12. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  13. M. Lipson, “Guiding, modulating, and emitting light on silicon -challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  14. D. R. Lide, Handbook of Chemistry and Physics (CRC, 1996), section 4–1.
  15. F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258(5), 6112–6615 (1964).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), volume 1.
  17. J. H. Ho, C. L. Lee, T. F. Lei, and T. S. Chao, “Ellipsometry measurement of the complex refractive index and thickness of polysilicon thin films,” J. Opt. Soc. Am. A 7(2), 196–205 (1990).
    [Crossref]
  18. P. Yeh, Optical Waves in Layered Media (Wiley, 2005), chap. 4, pp. 86–88.
  19. M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
    [Crossref]
  20. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  21. J. M. Choi, R. K. Lee, and A. Yariv, “Ring fiber resonators based on fused-fiber grating add-drop filters:application to resonator coupling,” Opt. Lett. 27(18), 1598–1600 (2002).
    [Crossref] [PubMed]

2014 (2)

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

2013 (7)

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

E. Almpanis and N. Papanikolaou, “Designing photonic structures of nanosphere arrays on reflectors for total absorption,” J. Appl. Phys. 114(8), 083106 (2013).
[Crossref]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
[Crossref]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

2012 (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

2011 (1)

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

2006 (1)

2005 (1)

2002 (2)

J. M. Choi, R. K. Lee, and A. Yariv, “Ring fiber resonators based on fused-fiber grating add-drop filters:application to resonator coupling,” Opt. Lett. 27(18), 1598–1600 (2002).
[Crossref] [PubMed]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

1990 (1)

1964 (1)

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258(5), 6112–6615 (1964).

Aizenberg, J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Almpanis, E.

E. Almpanis and N. Papanikolaou, “Designing photonic structures of nanosphere arrays on reflectors for total absorption,” J. Appl. Phys. 114(8), 083106 (2013).
[Crossref]

Amin, M.

M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bent, S. F.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Brongersma, M. L.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Byrnes, S. J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Campione, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Capasso, F.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Chao, T. S.

Choi, J. M.

Cleary, J. W.

Davids, P. S.

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Fathpour, S.

Feng, J.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Gan, Q.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ginn, J.

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Gires, F.

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258(5), 6112–6615 (1964).

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Hägglund, C.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Hendrickson, J. R.

Ho, J. H.

Hozhabri, N.

M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
[Crossref]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Jacobs, T.

Jalali, B.

Jarecki, R. L.

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Ji, D.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Jun, Y. C.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kats, M. A.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kolle, M.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Law, S.

Lee, C. L.

Lee, H. B. R.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Lee, R. K.

Lei, T. F.

Li, X. B.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lipson, M.

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Liu, Z.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Luk, T. S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Magnusson, R.

M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
[Crossref]

Papanikolaou, N.

E. Almpanis and N. Papanikolaou, “Designing photonic structures of nanosphere arrays on reflectors for total absorption,” J. Appl. Phys. 114(8), 083106 (2013).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rooney, G.

Ruiz, R.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Shaner, E. A.

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Sinclair, M. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Song, J. F.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

Soref, R.

Streyer, W.

Sun, H. B.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

Thomann, I.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Tournois, P.

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258(5), 6112–6615 (1964).

Wasserman, D.

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. M. Choi, R. K. Lee, and A. Yariv, “Ring fiber resonators based on fused-fiber grating add-drop filters:application to resonator coupling,” Opt. Lett. 27(18), 1598–1600 (2002).
[Crossref] [PubMed]

Zeltzer, G.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Zhang, X. L.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

Adv. Mater. (1)

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102(10), 103901 (2013).
[Crossref]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

C. R. Acad. Sci. Paris (1)

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258(5), 6112–6615 (1964).

IEEE Photon. Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Appl. Phys. (2)

J. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

E. Almpanis and N. Papanikolaou, “Designing photonic structures of nanosphere arrays on reflectors for total absorption,” J. Appl. Phys. 114(8), 083106 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Thin Solid Films (1)

M. Amin, N. Hozhabri, and R. Magnusson, “Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films,” Thin Solid Films 545, 480–484 (2013).
[Crossref]

Other (3)

D. R. Lide, Handbook of Chemistry and Physics (CRC, 1996), section 4–1.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), volume 1.

P. Yeh, Optical Waves in Layered Media (Wiley, 2005), chap. 4, pp. 86–88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the silicon on aluminum thin film perfect light absorber structure.

Fig. 2
Fig. 2

Optical constants of several most common semiconductor materials. (a) Indexes of refraction and (b) extinction coefficients [16, 17].

Fig. 3
Fig. 3

Photographs of the silicon thin films on aluminum surface (a) before thermal annealing and (b) after thermal annealing. Silicon film thickness increases from 10 nm to 200 nm with 10 nm increment as indicated beside each device. Devices with silicon film thickness between 110 nm and 140 nm can completely absorb light in wavelength range of 500 nm-700 nm. After thermal annealing, the peak absorption wavelengths shifted to shorter wavelengths and the colors of the devices changed accordingly.

Fig. 4
Fig. 4

Measured reflectance spectra of the fabricated devices: (a-d) before thermal annealing and (e-h) after thermal annealing. Perfect light absorption was achieved in 110-140 nm-thick silicon films within the spectral range of 552 nm-700 nm (c) before thermal annealing and (g) shifted to the spectral range of 500 nm-635 nm after the thermal annealing.

Fig. 5
Fig. 5

2D plots of the measured optical reflectance versus wavelength and silicon film thickness (a) before thermal annealing and (b) after thermal annealing. 2D plots of calculated optical reflectance versus wavelength and silicon film thickness for (c) amorphous silicon film devices and for (d) polycrystalline silicon film devices. White dash lines indicate the fitted peak absorption wavelength versus silicon film thickness for three optical resonance modes.

Fig. 6
Fig. 6

Optical reflectance spectra measured at different angles of incidence from 10 ° to 70 °. Reflectance measured from the perfect absorber devices with silicon thickness of (a) 110 nm, (b) 120 nm, (c) 130 nm, and (d) 140 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = r 12 + r 23 e 2 j φ 1 + r 12 r 23 e 2 j φ .
r 12 = k 1 y k 2 y k 1 y + k 2 y , r 23 = k 2 y k 3 y k 2 y + k 3 y .
r 12 = n 2 2 k 1 y n 1 2 k 2 y n 2 2 k 1 y + n 1 2 k 2 y , r 23 = n 3 2 k 2 y n 2 2 k 3 y n 3 2 k 2 y + n 2 2 k 3 y .

Metrics