Abstract

Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography

Tong Wu, Zhihua Ding, Kai Wang, Minghui Chen, and Chuan Wang
Opt. Express 17(16) 13819-13829 (2009)

Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt
Opt. Express 16(25) 20588-20596 (2008)

Endoscopic optical coherence tomography: technologies and clinical applications [Invited]

Michalina J. Gora, Melissa J. Suter, Guillermo J. Tearney, and Xingde Li
Biomed. Opt. Express 8(5) 2405-2444 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
    [Crossref] [PubMed]
  2. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87(6), 737–745 (2002).
    [Crossref] [PubMed]
  3. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref]
  4. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
    [Crossref] [PubMed]
  5. J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
    [Crossref]
  6. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
    [Crossref] [PubMed]
  7. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
    [Crossref]
  8. E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
    [Crossref]
  9. E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
    [Crossref] [PubMed]
  10. E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
    [Crossref]
  11. N. Zhang, T.-H. Tsai, O. O. Ahsen, K. Liang, H.-C. Lee, P. Xue, X. Li, and J. G. Fujimoto, “Compact piezoelectric transducer fiber scanning probe for optical coherence tomography,” Opt. Lett. 39(2), 186–188 (2014).
    [Crossref] [PubMed]
  12. T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).
  13. K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
    [Crossref] [PubMed]
  14. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
    [Crossref] [PubMed]
  15. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
    [Crossref] [PubMed]
  16. X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
    [Crossref]
  17. N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
    [Crossref]
  18. J. B. Pawley, Handbook of Biologic Confocal Microscopy (Springer, 2006).
    [Crossref]
  19. L. Cremer and M. Heckl, Structure-Borne Sound (Springer, 1988).
    [Crossref]
  20. C. J. Chen, “Electromechanical deflection of piezoelectric tubes with quartered electrodes,” Appl. Phys. Lett. 60, 132–134 (1992).
    [Crossref]
  21. N. Weber, H. Zappe, and A. Seifert, “Endoscopic optical probes for linear and rotational scanning,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 1065–1068 (2013).
  22. N. Weber, H. Zappe, and A. Seifert, “High-precision optical & fluidic micro-bench for endoscopic imaging,” in 2010 International Conference on Optical MEMS and Nanophotonics (OMN), 85–86 (2010).
  23. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
    [Crossref] [PubMed]
  24. W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3, e145–e150 (2014).
    [Crossref]
  25. P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, and H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral imaging,” Opt. Express 21(23), 27611–27621 (2013).
    [Crossref]

2014 (3)

2013 (1)

2012 (2)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
[Crossref] [PubMed]

N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
[Crossref]

2011 (2)

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
[Crossref] [PubMed]

2010 (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

2008 (1)

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

2006 (1)

E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
[Crossref]

2004 (2)

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
[Crossref] [PubMed]

2002 (2)

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87(6), 737–745 (2002).
[Crossref] [PubMed]

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

2001 (2)

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

1999 (1)

1996 (1)

1992 (1)

C. J. Chen, “Electromechanical deflection of piezoelectric tubes with quartered electrodes,” Appl. Phys. Lett. 60, 132–134 (1992).
[Crossref]

Ahsen, O. O.

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
[Crossref] [PubMed]

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

Buess, B.

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Chen, C. J.

C. J. Chen, “Electromechanical deflection of piezoelectric tubes with quartered electrodes,” Appl. Phys. Lett. 60, 132–134 (1992).
[Crossref]

Cheng, S.

Cheng, Y.-S. L.

Cremer, L.

L. Cremer and M. Heckl, Structure-Borne Sound (Springer, 1988).
[Crossref]

Cuenca, R.

Cu-Nguyen, P.-H.

Descour, M. R.

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Dickensheets, D. L.

Donaldson, L.

El-Naggar, A. K.

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

Esashi, M.

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

Fujimoto, J. G.

Gillenwater, A. M.

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Gmitro, A. F.

Gould, J. C.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Grewe, A.

Haga, Y.

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

Heckl, M.

L. Cremer and M. Heckl, Structure-Borne Sound (Springer, 1988).
[Crossref]

Heise, C. P.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87(6), 737–745 (2002).
[Crossref] [PubMed]

Hillenbrand, M.

Hino, R.

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

Hopkins, M. F.

Jabbour, J. M.

Jiang, H.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Jo, J. A.

Johnston, R. S.

E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
[Crossref]

Kano, A.

Kino, G. S.

Knittel, J.

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Kroto, S. M.

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

Lee, H.-C.

Li, X.

Liang, K.

Liebetraut, P.

Mader, D.

Maitland, K. C.

J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
[Crossref] [PubMed]

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Makishi, W.

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

Malik, B. H.

Matsunaga, T.

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

Melville, C. D.

E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
[Crossref]

Messerschmidt, B.

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Olsovsky, C.

Ouzounov, D. G.

Pawley, J. B.

J. B. Pawley, Handbook of Biologic Confocal Microscopy (Springer, 2006).
[Crossref]

Possner, T.

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Reinhall, P. G.

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

Richards-Kortum, R. R.

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Rivera, D. R.

Rouse, A. R.

Sabharwal, Y. S.

Schnieder, L.

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
[Crossref]

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

Seifert, A.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3, e145–e150 (2014).
[Crossref]

P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, and H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral imaging,” Opt. Express 21(23), 27611–27621 (2013).
[Crossref]

N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
[Crossref]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
[Crossref] [PubMed]

N. Weber, H. Zappe, and A. Seifert, “High-precision optical & fluidic micro-bench for endoscopic imaging,” in 2010 International Conference on Optical MEMS and Nanophotonics (OMN), 85–86 (2010).

N. Weber, H. Zappe, and A. Seifert, “Endoscopic optical probes for linear and rotational scanning,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 1065–1068 (2013).

Sinzinger, S.

Smith, C. T.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Smithwick, Q. Y.

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

Smithwick, Q. Y. J.

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

Tsai, T.-H.

Udovich, J. A.

Van Dam, J.

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Waibel, P.

Wang, T. D.

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Webb, W. W.

Weber, N.

N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
[Crossref]

N. Weber, H. Zappe, and A. Seifert, “High-precision optical & fluidic micro-bench for endoscopic imaging,” in 2010 International Conference on Optical MEMS and Nanophotonics (OMN), 85–86 (2010).

N. Weber, H. Zappe, and A. Seifert, “Endoscopic optical probes for linear and rotational scanning,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 1065–1068 (2013).

Williams, M. D.

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Wright, J. M.

Xu, C.

Xue, P.

Zappe, H.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3, e145–e150 (2014).
[Crossref]

P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, and H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral imaging,” Opt. Express 21(23), 27611–27621 (2013).
[Crossref]

N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
[Crossref]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
[Crossref] [PubMed]

N. Weber, H. Zappe, and A. Seifert, “Endoscopic optical probes for linear and rotational scanning,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 1065–1068 (2013).

N. Weber, H. Zappe, and A. Seifert, “High-precision optical & fluidic micro-bench for endoscopic imaging,” in 2010 International Conference on Optical MEMS and Nanophotonics (OMN), 85–86 (2010).

Zeng, X.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

Zhang, N.

Zhang, W.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3, e145–e150 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. J. Chen, “Electromechanical deflection of piezoelectric tubes with quartered electrodes,” Appl. Phys. Lett. 60, 132–134 (1992).
[Crossref]

Biomed. Opt. Express (1)

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Exp. Physiol. (1)

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87(6), 737–745 (2002).
[Crossref] [PubMed]

J. Biophoton. (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010).
[Crossref]

J. Microelectromech. Syst. (2)

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst. 20(3), 583–593 (2011).
[Crossref]

N. Weber, H. Zappe, and A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21(6), 1357–1364 (2012).
[Crossref]

Lasers Surg. Med. (1)

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

Light Sci. Appl. (1)

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3, e145–e150 (2014).
[Crossref]

Opt. Commun. (1)

J. Knittel, L. Schnieder, B. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Oral Oncol. (1)

K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, “In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope,” Oral Oncol. 44(11), 1059–1066 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” Proc. SPIE 6083, 608303 (2006).
[Crossref]

E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, “Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view,” Proc. SPIE 4158, 29 (2001).
[Crossref]

Other (5)

T. Matsunaga, R. Hino, W. Makishi, M. Esashi, and Y. Haga, “Electromagnetically driven ultra-miniature single fiber scanner for high-resolution endoscopy fabricated on cylindrical substrates using MEMS process,” IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 999–1002 (2010).

J. B. Pawley, Handbook of Biologic Confocal Microscopy (Springer, 2006).
[Crossref]

L. Cremer and M. Heckl, Structure-Borne Sound (Springer, 1988).
[Crossref]

N. Weber, H. Zappe, and A. Seifert, “Endoscopic optical probes for linear and rotational scanning,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 1065–1068 (2013).

N. Weber, H. Zappe, and A. Seifert, “High-precision optical & fluidic micro-bench for endoscopic imaging,” in 2010 International Conference on Optical MEMS and Nanophotonics (OMN), 85–86 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Overall concept of the fiber scanner probe based on a silicon micro-bench.
Fig. 2
Fig. 2 Two fundamental arrangements of the optical elements which have been analyzed by ray tracing simulations. Configuration (a) yields a high resolution, configuration (b) generates a larger field of view but lower resolution.
Fig. 3
Fig. 3 (a) Axial scan range and magnification as a function of the design parameter x1. The optical setup is illustrated in Fig. 2(a). x1 = 0.7mm results in a magnification of 1.43 and a scan range of more than 200 μm. (b) Maximum spatial frequency with a contrast of more than 50% as a function of the design parameter x1 for different fiber deflections. x1 = 0.8mm provides the highest cut-off frequency for a fiber deflection of 150 μm.
Fig. 4
Fig. 4 Schematic of the actuation of the piezo tube with integrated optical fiber. The protruding fiber end performs a linear, circular or spiral movement dependent on the applied voltages and phase difference.
Fig. 5
Fig. 5 (a) Photograph of single Si MEMS components fabricated for the confocal fiber scanner. (b) Photograph of the fully assembled optical micro-bench. The components were glued by a stamping process. The electrical connection was realized by reflow soldering of copper wires. The single mode fiber was aligned and fixed without any internal stress. A silicone tubing connects the internal fluid channels with an external pressure transducer.
Fig. 6
Fig. 6 The voltage signals applied to the piezo electrodes responsible for x and y deflection are illustrated in red and blue. The scan patterns generated by the given driving signals are shown below.
Fig. 7
Fig. 7 Schematic of the setup used for measuring fiber deflection and axial focus position. Fiber deflection is measured in a steady-state. The telescope amplifies the radius of the circular oscillation by a factor of 20.
Fig. 8
Fig. 8 Measured frequency response of the circular oscillation of the fiber at different voltage amplitudes applied to the electrodes of the piezo tube. The resonance frequency shifts towards smaller values with increasing amplitude.
Fig. 9
Fig. 9 Radius r of measured and simulated circular oscillation as a function of applied actuation voltage for a frequency around 9.9 kHz. For the first simulation, a damping ratio of 0.002 has been assumed according to literature. Subsequent simulations show that a ratio of 0.006 much better describes the fiber rotation.
Fig. 10
Fig. 10 Image of a planar reflective surface. The fringes originate from interferences between reflections from the surface of the sample and from inner reflections of the fiber scanner. The surface was imaged at two different scan frequencies. The first interference maximum is marked by a dashed black line in both images. Each ring in both images is measured with the same fiber deflection. Thus, the more rings can be seen, the larger the field of view. Image (a) was recorded with a scan frequency of 10.01 kHz equal to the resonant frequency in steady-state condition. For image (b), the scan frequency was changed to 10.09 kHz. In a non-steady state, the resonance frequency changes and leads to a maximum fiber deflection at other conditions.
Fig. 11
Fig. 11 Axial displacement of the focus as a function of the actuated volume. The focal position is the working distance behind the GRIN lens. After filling the lens and closing the vent duct, an initial volume of 78 nl is required to ensure a slight tension in the membrane. A further increase in volume of about 150 nl shifts the focus by about 100 μm towards the last facet of the GRIN lens. The error bars reflect the precision (± one standard deviation) due to 6 different sweeps.
Fig. 12
Fig. 12 Schematic of the measurement setup for confocal imaging with a HeNe laser as light source. The signal of the photodiode is used for compensating instabilities of the laser output power. The signal of the detector is proportional to the amount of backscattered and reflected light from the sample.
Fig. 13
Fig. 13 Confocal image of a reflective grid with 1.7 μm lines and 10 μm period (left). The middle inset shows a microscope image of the grid. Comparison of both images provides information about distortion of the confocal scan. The right graph shows the intensity profile of a line grating with line widths of 2 μm at a period of 4 μm.
Fig. 14
Fig. 14 Averaged axial intensity of a reflective surface. The measured data are approximated by a Gaussian. FWHM was determined to be 19 μm, providing a measure for the axial resolution of the confocal system.
Fig. 15
Fig. 15 Left: Microscope image of a 3D gold structure. The flat area has a thickness of 42 μm, the meander structure of 3.5 μm. Right: Confocal 2D images of the 3D structure. In image (a), the confocal plane was positioned exactly on the thinner meander layer, in (b) between both layers, and in (c) on top of the thick flat layer.
Fig. 16
Fig. 16 The intensity of the two layers of the 3D structure from Figure 15 was integrated at 20 different focal positions (abscissa). The result clearly demonstrates the modality of depth discrimination. The focus was shifted backwards from infinity (zero pressure) towards the probe (highest actuation) by about 66.5μm in steps of 3.5μm.

Tables (2)

Tables Icon

Table 1 Summarization of the most significant optical design parameters and design results. n: refractive index, t: thickness, Δf : focal tuning range, M: magnification, x1: distance fiber–fluidic lens, x2: distance fluidic lens–GRIN lens, Δz: axial resolution, Δx: lateral resolution.

Tables Icon

Table 2 Most relevant mechanical design parameters and design outcome. Δr: max. deflection of the piezo, Umax: maximum voltage, E: Young’s modulus, ρ: densitiy, AΔr: maximum deflection of the fiber (A is the gain), fres: calculated resonance frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ z = 1.28 n λ NA 2 ,
Δ x = 0.43 λ NA ,
x ( t ) = A ( t ) sin ( ω t ) y ( t ) = B ( t ) cos ( ω t ) ,

Metrics