Abstract

For the first time, we demonstrate the possibility to generate record-high output radiation power exceeding 1 W in an all-fibre figure-eight mode-locked Yb fibre master oscillator based on non-linear amplifying loop mirror. Generated at the repetition rate of 25 MHz clusters of sub-pulses with duration of no more than 200 fs have envelope width of 23 ps or less. Two typical mode-locked laser regimes with substantially different generation spectra are identified and results of their study presented. Numerical modelling of laser generation in the proposed layout agrees well with the measured experimental data.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy > 12 µJ

Alexey Ivanenko, Sergey Kobtsev, Sergey Smirnov, and Anna Kemmer
Opt. Express 24(6) 6650-6655 (2016)

Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers

Sergey Kobtsev, Sergey Kukarin, Sergey Smirnov, Sergey Turitsyn, and Anton Latkin
Opt. Express 17(23) 20707-20713 (2009)

Linear compression of chirped pulses in optical fibre with large step-index mode area

S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin
Opt. Express 23(4) 3914-3919 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  2. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  3. G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
    [Crossref]
  4. M. E. Fermann, “Ultrafast Fiber Oscillators,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann A. Galvanauskas, and G. Sucha, eds. (CRC Press, 2002), Chap. 3.
  5. M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
    [Crossref]
  6. K. Ozgören, B. Öktem, S. Yılmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
    [Crossref] [PubMed]
  7. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
    [Crossref]
  8. P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian, M. Mansuripur, and J. Moloney, “All-fiber passively mode-locked laser oscillator at 1.5 μm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), 592–594 (2006).
    [Crossref] [PubMed]
  9. N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
    [Crossref]
  10. X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
    [Crossref]
  11. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  12. I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
    [Crossref]
  13. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  14. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
    [Crossref] [PubMed]
  15. B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
    [Crossref]
  16. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20(16), 17797–17805 (2012).
    [Crossref] [PubMed]
  17. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fibre arrangements for high power fibre lasers and amplifiers,” Patent US 6826335 B1, issued date: Nov 30, (2004).
  18. A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
    [Crossref]
  19. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
    [Crossref] [PubMed]
  20. X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
    [Crossref]
  21. A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
    [Crossref] [PubMed]
  22. O. G. Okhotnikov and F. M. Araújo, “Cavity dumping of fiber lasers by phase-modulated optical loop mirrors,” Opt. Lett. 21(1), 57–58 (1996).
    [Crossref] [PubMed]
  23. S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
    [Crossref]
  24. S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014).
    [Crossref] [PubMed]
  25. S. Kobtsev, S. Kukarin, S. Smirnov, and I. Ankudinov, “Cascaded SRS of single- and double-scale fiber laser pulses in long extra-cavity fiber,” Opt. Express 22(17), 20770–20775 (2014).
    [Crossref] [PubMed]
  26. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  27. S. Nolte, S. Döring, A. Ancona, J. Limpert, and A. Tünnermann, “High repetition rate ultrashort pulse micromachining with fiber lasers,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThC1.
  28. M. Erdoğan, B. Öktem, H. Kalaycıoğlu, S. Yavaş, P. K. Mukhopadhyay, K. Eken, K. Ozgören, Y. Aykaç, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19(11), 10986–10996 (2011).
    [Crossref] [PubMed]
  29. M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
    [Crossref]

2014 (6)

2012 (3)

2011 (4)

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

M. Erdoğan, B. Öktem, H. Kalaycıoğlu, S. Yavaş, P. K. Mukhopadhyay, K. Eken, K. Ozgören, Y. Aykaç, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19(11), 10986–10996 (2011).
[Crossref] [PubMed]

K. Ozgören, B. Öktem, S. Yılmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

2010 (2)

A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
[Crossref]

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

2009 (2)

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
[Crossref]

2006 (1)

1997 (1)

1996 (1)

1994 (1)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

1993 (1)

G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
[Crossref]

1990 (1)

1988 (1)

Aguergaray, C.

Amrani, F.

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

Ankudinov, I.

Araújo, F. M.

Arif, R. N.

Aykaç, Y.

Barad, Y.

Broderick, N. G.

Che, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Chen, C.-J.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Chernysheva, M. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Dantus, M.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Dianov, E. M.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Doran, N. J.

Duling, I. N.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Eken, K.

Erdogan, M.

Erkintalo, M.

Fedotov, Y. S.

Fermann, M. E.

Gao, C. X.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gong, Y. K.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Haberl, F.

Hochreiter, H.

Hofer, M.

Horowitz, M.

Hu, X. H.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Hu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Ilday, F. Ö.

Ivanenko, A.

Ivanenko, A. V.

A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
[Crossref]

Kalaycioglu, H.

Kim, D. Y.

N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
[Crossref]

Kobtsev, S.

Kobtsev, S. M.

Krasinski, J. S.

G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
[Crossref]

Krylov, A. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Kryukov, P. G.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Kukarin, S.

Kukarin, S. V.

S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014).
[Crossref] [PubMed]

A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
[Crossref]

Kurkov, A. S.

A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
[Crossref]

Latkin, A.

Leblond, H.

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

Li, C.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Li, J.

Li, X. H.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Liu, B.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Liu, X. L.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Liu, Y.

Liu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Lozovoy, V. V.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Luo, H.

Mansuripur, M.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Menyuk, C. R.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Moloney, J.

Mou, C.

Mukhopadhyay, P. K.

Murakami, M.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Nie, B.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Okhotnikov, O. G.

Öktem, B.

Ozgören, K.

Panasenko, D.

Parker, G.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Pearson, G. W.

G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
[Crossref]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Rozhin, A. G.

Runge, A. F.

Salhi, M.

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

Sanchez, F.

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

Seong, N. H.

N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
[Crossref]

Shen, D. Y.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Silberberg, Y.

Smirnov, S.

Smirnov, S. V.

Sun, Z.

Tazebay, U. H.

Turitsyn, S.

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[Crossref] [PubMed]

Turitsyn, S. K.

Uehara, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

Veetil, S. P.

N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
[Crossref]

Wai, P. K. A.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Wang, H. S.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Wang, X. L.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Wang, Y. S.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Wood, D.

Yan, Z.

Yang, Z.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Yavas, S.

Yilmaz, S.

Zanoni, R.

G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
[Crossref]

Zhang, L.

Zhang, W.

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Zhang, Y. N.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Zhang, Z.

Zhao, W.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Appl. Phys. Express (1)

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2, 042501 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Laser Phys. (3)

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, “Femtosecond Er laser system based on side-coupled fibers,” Laser Phys. 20(2), 341–343 (2010).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhang, W. Zhao, X. H. Hu, Z. Yang, C. X. Gao, X. L. Wang, X. L. Liu, D. Y. Shen, and C. Li, “Low-repetition-rate Ytterbium-doped fiber laser based on a CFBG from large anomalous to large normal dispersion,” Laser Phys. 21(12), 2112–2117 (2011).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (2)

N. H. Seong, D. Y. Kim, and S. P. Veetil, “Mode-locked fiber laser based on an attenuation-imbalanced nonlinear optical loop mirror,” Opt. Commun. 280(2), 438–442 (2007).
[Crossref]

G. W. Pearson, R. Zanoni, and J. S. Krasinski, “Analysis of ultra-short pulse propagation in a fiber nonlinear amplifying loop mirror,” Opt. Commun. 103(5–6), 507–518 (1993).
[Crossref]

Opt. Eng. (1)

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Opt. Express (8)

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[Crossref] [PubMed]

M. Erdoğan, B. Öktem, H. Kalaycıoğlu, S. Yavaş, P. K. Mukhopadhyay, K. Eken, K. Ozgören, Y. Aykaç, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19(11), 10986–10996 (2011).
[Crossref] [PubMed]

K. Ozgören, B. Öktem, S. Yılmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20(16), 17797–17805 (2012).
[Crossref] [PubMed]

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
[Crossref] [PubMed]

S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014).
[Crossref] [PubMed]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

S. Kobtsev, S. Kukarin, S. Smirnov, and I. Ankudinov, “Cascaded SRS of single- and double-scale fiber laser pulses in long extra-cavity fiber,” Opt. Express 22(17), 20770–20775 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Opt. Lett. (6)

Phys. Rev. A (1)

M. Salhi, F. Amrani, H. Leblond, and F. Sanchez, “Analytical investigation of a figure-eight single-pulse all-fiber laser based on a nonlinear amplifying loop mirror,” Phys. Rev. A 82(4), 043834 (2010).
[Crossref]

Other (3)

A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fibre arrangements for high power fibre lasers and amplifiers,” Patent US 6826335 B1, issued date: Nov 30, (2004).

M. E. Fermann, “Ultrafast Fiber Oscillators,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann A. Galvanauskas, and G. Sucha, eds. (CRC Press, 2002), Chap. 3.

S. Nolte, S. Döring, A. Ancona, J. Limpert, and A. Tünnermann, “High repetition rate ultrashort pulse micromachining with fiber lasers,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThC1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental layout: PC1, PC2 – polarisation controllers; LD – pump laser diode; d1, d2 – stretches of polarisation-maintaining fibre.

Fig. 2
Fig. 2

(a) Auto-correlation functions and (b) radiation spectra of two typical generation regimes (RG 1 and RG 2) with one pulse train (cluster) per cavity round trip.

Fig. 3
Fig. 3

Output spectrum evolution in regime RG1 versus the pump radiation power. Inset: dependence of the average output power from port 1 of the F8 master oscillator upon the pump radiation power and the shape of pulse auto-correlation function at the average output power from port 1 of the F8 master oscillator equal to 290 mW and 690 mW.

Fig. 4
Fig. 4

Dependence upon the pump power of the average output power from port 1 of the F8 master oscillator in regime RG2. Inset: radiation spectra and auto-correlation functions of pulses at the average output power from port 1 of F8 master oscillator equal to 390 mW and 610 mW.

Fig. 5
Fig. 5

(a) Spectra of radiation from ports 1 and 2 of the F8 master oscillator in generation regime RG1 (inset: dependence of average radiation power at the exit of these ports in regime RG1); (b) Spectra of radiation from ports 1 and 2 in generation regime RG2 (inset: dependence of average radiation power at the exit of these ports in regime RG2).

Fig. 6
Fig. 6

Modelling results (a) ACF peak height ξ vs. field fluctuation strength σ; (b) time- and ensemble-averaged NALM loop transmition coeff. T; (c) power ratio P 2 / P 1 as a function of ξ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P( t )= 1+ε ( t ) 2 cos h 2 ( t/T )  ,
ξ= 1+4 σ 2 ( 1+ σ 2 ) 1+8 σ 2 ( 1+ σ 2 )  ,

Metrics