Abstract

We describe an injection-locked 64 QAM homodyne coherent transmission, which is the highest QAM multiplicity realized with an injection locking technique. The frequency locking range of the local oscillator (LO) was as wide as 1 GHz. The phase noise was only 0.2 deg, which is 1/3 of that obtained with our previous OVCO-based OPLL (0.6 deg.). As a result, a 120 Gbit/s polarization-multiplexed 64 QAM signal was successfully transmitted over 150 km with a simple receiver configuration and low DSP complexity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator

Yixin Wang, Keisuke Kasai, Tatsunori Omiya, and Masataka Nakazawa
Opt. Express 21(23) 28290-28296 (2013)

80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver

Keisuke Kasai, Yixin Wang, Shohei Beppu, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 29174-29183 (2015)

320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(19) 22088-22096 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
    [Crossref]
  2. R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17(4), 887–889 (2005).
    [Crossref]
  3. Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
    [Crossref]
  4. C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
    [Crossref]
  5. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17(5), 681–689 (1981).
    [Crossref]
  6. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [Crossref] [PubMed]
  7. S. K. Ibrahim, S. Sygletos, R. Weerasuriya, and A. D. Ellis, “Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals,” Opt. Express 19(9), 8320–8326 (2011).
    [Crossref] [PubMed]
  8. S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2012, JW2A.
    [Crossref]
  9. Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” in Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
    [Crossref]
  10. Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
    [Crossref] [PubMed]

2013 (1)

2011 (2)

S. K. Ibrahim, S. Sygletos, R. Weerasuriya, and A. D. Ellis, “Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals,” Opt. Express 19(9), 8320–8326 (2011).
[Crossref] [PubMed]

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
[Crossref]

2008 (1)

2005 (1)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

1981 (1)

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17(5), 681–689 (1981).
[Crossref]

1973 (1)

C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Buczek, C. J.

C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Chang-Hasnain, C.

Ellis, A. D.

Freiberg, R. J.

C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Ibrahim, S. K.

Kasai, K.

Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
[Crossref] [PubMed]

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
[Crossref]

Kimura, T.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17(5), 681–689 (1981).
[Crossref]

Kobayashi, S.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17(5), 681–689 (1981).
[Crossref]

Lau, E. K.

Nakazawa, M.

Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
[Crossref] [PubMed]

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
[Crossref]

Noe, R.

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

Omiya, T.

Parekh, D.

Skolnik, M. M.

C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Sung, H.-K.

Sygletos, S.

Wang, Y.

Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
[Crossref] [PubMed]

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
[Crossref]

Weerasuriya, R.

Wu, M. C.

Zhao, X.

IEEE J. Quantum Electron. (1)

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17(5), 681–689 (1981).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

IEICE Electron. Express (1)

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express 8(17), 1444–1449 (2011).
[Crossref]

Opt. Express (3)

Proc. IEEE (1)

C. J. Buczek, R. J. Freiberg, and M. M. Skolnik, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Other (3)

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2012, JW2A.
[Crossref]

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” in Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for 120 Gbit/s Pol-Mux, 64 QAM-150 km coherent transmission.
Fig. 2
Fig. 2 RF spectrum of 10 Gsymbol/s, 64 QAM data signal.
Fig. 3
Fig. 3 The relationship between the EVM of the demodulated 64 QAM signal and (a) the power ratio between the pilot tone and the data, (b) injection power.
Fig. 4
Fig. 4 (a) Locking range characteristics of an LO measured with an EFL as a master laser. (b) The EVM as a function of frequency detuning with different injection powers, Pinj.
Fig. 5
Fig. 5 Optimization of launch power in 120 Gbit/s, 64 QAM-150 km coherent transmission.
Fig. 6
Fig. 6 Optical spectra of 120 Gbit/s, 64 QAM data signal before and after 150 km transmission (0.1 nm resolution bandwidth).
Fig. 7
Fig. 7 Characteristics of injection locking circuit: IF spectrum of beat between pilot and injection locked LO in (a) 200 MHz and (b) 20 MHz spans, (c) single side-band (SSB) phase noise (10 Hz~1 MHz).
Fig. 8
Fig. 8 Constellation maps for a 10 Gsymbol/s, 64 QAM signal for (a) back-to-back, and (b) 150 km transmissions.
Fig. 9
Fig. 9 BER characteristics for Pol-Mux, 10 Gsymbol/s, 64 QAM (120 Gbit/s)-150 km transmission.

Metrics