Abstract

We report the first demonstration of mid-infrared supercontinuum generation in As2Se3 chalcogenide microwires with the added advantage of using low energy pulses. The generated SC covers two octaves of bandwidth from 1.1 μm to 4.4 μm at −30 dB. This exceeds the broadest reported SC bandwidth in As2Se3 microwires by a factor of 3.5. The microwire geometry and pumping conditions are the key parameters in generating the 3.3 μm bandwidth while using a low pump pulse energy of 500 pJ.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide

M. R. Karim, B. M. A. Rahman, and Govind P. Agrawal
Opt. Express 23(5) 6903-6914 (2015)

Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers

Francis Théberge, Nancy Bérubé, Samuel Poulain, Solenn Cozic, Stéphane Châtigny, Louis-Rafaël Robichaud, Louis-Philippe Pleau, Martin Bernier, and Réal Vallée
Opt. Express 26(11) 13952-13960 (2018)

Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser

Shangran Xie, Nikolai Tolstik, John C. Travers, Evgeni Sorokin, Celine Caillaud, Johann Troles, Philip St.J. Russell, and Irina T. Sorokina
Opt. Express 24(11) 12406-12413 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [Crossref]
  2. A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
    [Crossref]
  3. S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75, 799–802 (2002).
    [Crossref]
  4. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [Crossref]
  5. L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).
  6. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [Crossref] [PubMed]
  7. R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-IR Supercontinuum laser source based on As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
    [Crossref] [PubMed]
  8. L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
    [Crossref]
  9. J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
    [Crossref]
  10. N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
    [Crossref]
  11. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm,” Opt. Express 21, 24281–24287 (2013).
    [Crossref] [PubMed]
  12. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in zblan fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [Crossref]
  13. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref] [PubMed]
  14. I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
    [Crossref]
  15. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater 4, 665–678 (2002).
  16. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [Crossref]
  17. D-II Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
    [Crossref] [PubMed]
  18. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
    [Crossref]
  19. M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
    [Crossref]
  20. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced kerr nonlinearity in sub-wavelength diameter as2se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
    [Crossref]
  21. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Dsvdavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [Crossref] [PubMed]
  22. J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
    [Crossref]
  23. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref] [PubMed]
  24. O. Mouawad, J. Picot-Clmente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Dsvdavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
    [Crossref] [PubMed]
  25. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
    [Crossref] [PubMed]
  26. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38, 2865–2868 (2013).
    [Crossref] [PubMed]
  27. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
    [Crossref] [PubMed]
  28. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  29. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3μm,” Opt. Express 21, 29488–29504 (2013).
    [Crossref]
  30. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
    [Crossref] [PubMed]
  31. A. Al-kadry and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38, 1185–1187 (2013).
    [Crossref] [PubMed]
  32. D. D. Hudson, S. A. Dekker, E. C. Mgi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
    [Crossref] [PubMed]
  33. C. Baker and M. Rochette, “A generalized heat-brush approach for precise control of the waist profile in fiber tapers,” Opt. Mater. Express 1, 1065–1076 (2011).
    [Crossref]
  34. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
    [Crossref] [PubMed]
  35. J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
    [Crossref]
  36. T. A. Cerni, “An infrared hygrometer for atmospheric research and routine monitoring,” J. Atmos. Oceanic Technol. 11, 445–462 (1994).
    [Crossref]
  37. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).
  38. W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
    [Crossref]
  39. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [Crossref] [PubMed]

2014 (3)

2013 (6)

2012 (6)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

2011 (5)

2010 (3)

2009 (1)

J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
[Crossref]

2008 (2)

2007 (3)

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced kerr nonlinearity in sub-wavelength diameter as2se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
[Crossref]

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
[Crossref] [PubMed]

2003 (1)

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

2002 (3)

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater 4, 665–678 (2002).

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75, 799–802 (2002).
[Crossref]

2001 (2)

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[Crossref]

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

1994 (1)

T. A. Cerni, “An infrared hygrometer for atmospheric research and routine monitoring,” J. Atmos. Oceanic Technol. 11, 445–462 (1994).
[Crossref]

Abouraddy, A. F.

Aggarwal, I.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mgi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater 4, 665–678 (2002).

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Agger, C. S.

Alam, S. U.

Alexander, V. V.

Al-kadry, A.

Amrani, F.

Baker, C.

Bang, O.

Baskiotis, C.

Benson, T. M.

Bony, P.

Bourdon, P.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Brambilla, G.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Brilland, L.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Dsvdavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Btourn, A.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Buczynski, R.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Byer, R. L.

Canat, G.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Cerni, T. A.

T. A. Cerni, “An infrared hygrometer for atmospheric research and routine monitoring,” J. Atmos. Oceanic Technol. 11, 445–462 (1994).
[Crossref]

Chan, A.

Cheng, T.

Chudoba, C.

Churbanov, M. F.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

Cordeiro, C. M. B.

Couderc, V.

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Cronin-Golomb, M.

Dekker, S. A.

Delfyett, P. J.

Deng, D.

Désévédavy, F.

Dianov, E. M.

Domachuk, P.

Druon, F.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Dsvdavy, F.

Duan, Z.

Ducros, N.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Duhant, M.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Ebendorff-Heidepriem, H.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Eggleton, B. J.

El Amraoui, M.

El-Amraoui, M.

Farries, M.

Fatome, J.

Feehan, J. S.

Feng, X.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Février, S.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Finazzi, V.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Flanagan, J. C.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Fortier, C.

Franke, K.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Freeman, M. J.

Fu, L.

Fu, L. B.

Fuhrberg, P.

Fujimoto, J. G.

Furniss, D.

Gadret, G.

Gao, W.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-IR Supercontinuum laser source based on As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

George, A. K.

Georges, P.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Ghanta, R. K.

Giessen, H.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Hanna, M.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Harbold, J. M.

Hartl, I.

Heidt, A. M.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Horak, P.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Hu, J.

Hudson, D. D.

Huss, G.

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Ilday, F. O.

Islam, M. N.

Jackson, S. D.

Judge, A. C.

Jules, J. C.

Jules, J.-C.

Kawashima, H.

Kibler, B.

Knight, J. C.

Ko, T. H.

Kohoutek, T.

Kubat, I.

Kulkarni, O. P.

Kumar, M.

Kung, F. H.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Labruyère, A.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Labruyre, A.

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Lamont, M. R.

Lamont, M. R. E.

Lamrini, S.

Leong, J.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Leproux, P.

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Leuschner, M.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Li, E.

Li, X. D.

Li, Z.

Liao, M.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Mägi, E. C.

Marandi, A.

Marquez, M. P.

Meiser, D.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Menyuk, C. R.

Messaddeq, Y.

Mgi, E. C.

Møller, U.

Monro, T. M.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Morin, F.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Moselund, P. M.

Mouawad, O.

Napier, B.

Neelakandan, M.

Nguyen, D.

Nguyen, H. C.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Norwood, R. A.

Ohishi, Y.

Omenetto, F. G.

Petropoulos, P.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Peyghambarian, N.

Picot-Clmente, J.

Piracha, M. U.

Plotnichenko, V. G.

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
[Crossref] [PubMed]

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

Poletti, F.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Price, J.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

Price, J. H. V.

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Pysz, D.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Ranka, J. K.

Renard, W.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Renversez, G.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Richardson, D. J.

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref] [PubMed]

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rochette, M.

Roelens, M. A. F.

Rudy, C. W.

Sanders, S.

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75, 799–802 (2002).
[Crossref]

Sanghera, J.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-IR Supercontinuum laser source based on As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mgi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater 4, 665–678 (2002).

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Savelli, I.

Scholle, K.

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

Seddon, A. B.

Shabahang, S.

Shaw, L. B.

Shaw, S. B.

J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
[Crossref]

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

Skorobogatiy, M.

Skripatchev, I.

Smektala, F.

Snopatin, G. E.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

Song, F.

Stepien, R.

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

Strutynski, C.

Sujecki, S.

Suzuki, T.

Tang, Z.

Tao, G.

Teipel, J.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Terry, F. L.

Thielen, P. A.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Tonello, A.

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Tong, L.

Toupin, P.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Troles, J.

Trols, J.

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

Türke, D.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Ung, B.

Vodopyanov, K. L.

Wang, A.

Ward, J.

Warken, F.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Wei, C.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Windeler, R. S.

Wise, F. W.

Wolchover, N. A.

Yeom, D. I.

Yeom, D-II

Yuan, W.

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[Crossref]

Zhai, G.

Zhu, X.

Appl. Phys. B (2)

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75, 799–802 (2002).
[Crossref]

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003).
[Crossref]

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

IEEE J. Sel. Top. Quant. (2)

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quant. 13, 738–749 (2007).
[Crossref]

J. S. Sanghera, S. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15, 114–119 (2009).
[Crossref]

J. Atmos. Oceanic Technol. (1)

T. A. Cerni, “An infrared hygrometer for atmospheric research and routine monitoring,” J. Atmos. Oceanic Technol. 11, 445–462 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. adv. M. (1)

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. adv. M. 3, 341–349 (2001).

J. Optoelectron. Adv. Mater (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater 4, 665–678 (2002).

Laser Phys. Lett. (1)

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (12)

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
[Crossref] [PubMed]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref] [PubMed]

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref] [PubMed]

I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced kerr nonlinearity in sub-wavelength diameter as2se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Dsvdavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

A. Labruyre, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Opt. Lett. (9)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[Crossref]

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-IR Supercontinuum laser source based on As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref] [PubMed]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear as-s-se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

D-II Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38, 2865–2868 (2013).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref] [PubMed]

O. Mouawad, J. Picot-Clmente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Dsvdavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref] [PubMed]

A. Al-kadry and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38, 1185–1187 (2013).
[Crossref] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mgi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (2)

M. Duhant, W. Renard, G. Canat, J. Trols, P. Toupin, L. Brilland, F. Smektala, A. Btourn, P. Bourdon, and G. Renversez, “Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber,” Proc. SPIE 8237, 823735 (2012).
[Crossref]

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Other (2)

N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, P. Georges, R. Buczynski, D. Pysz, and R. Stepien, “Mid-infrared supercontinuum generation in lead-bismuth-gallium oxide glass photonic crystal fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” Conf. Adv. Solid State Lasers (ASSL), (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for SC generation. SMF: single-mode fiber. VOA: Variable optical attenuator. Amp: Tm-doped amplifier.
Fig. 2
Fig. 2 a) Dispersion profiles of As2Se3 microwire with diameters varying between 0.6 μm and 2.0 μm. b) Waveguide nonlinearity and effective mode area of As2Se3 microwire with a diameter of 1.6 μm.
Fig. 3
Fig. 3 a) Experimentally generated SC spectra from As2Se3 microwires with diameters varying between 0.6 μm and 2.0 μm. The input pulse energy to the microwires is 124 pJ. b) Experimentally generated (solid-line) and calculated (dashed-line) SC spectra from a microwire with a diameter of 1.6 μm using various pump power levels.
Fig. 4
Fig. 4 Experimentally generated SC spectra from amplified pump pulses using a microwire with a diameter of 1.6 μm and for various amplified pump power levels. The inset in the bottom plot shows the autocorrelation trace of the amplified pump pulse.

Metrics