Abstract

Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy

Leonardo Sacconi, Jonathan Mapelli, Daniela Gandolfi, Jacopo Lotti, Rodney P. O’Connor, Egidio D’Angelo, and Francesco S. Pavone
Opt. Express 16(19) 14910-14921 (2008)

Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution

Liisa M. Hirvonen, Frederic Festy, and Klaus Suhling
Opt. Lett. 39(19) 5602-5605 (2014)

Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience

Peter Rupprecht, Robert Prevedel, Florian Groessl, Wulf E. Haubensak, and Alipasha Vaziri
Biomed. Opt. Express 6(2) 353-368 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
    [Crossref]
  2. C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).
  3. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
    [Crossref] [PubMed]
  4. B. Masters, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  6. M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
    [Crossref]
  7. M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
    [Crossref]
  8. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
    [Crossref] [PubMed]
  9. T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
    [Crossref] [PubMed]
  10. M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013–1022 (2004).
    [Crossref]
  11. M. D. Peterson, P. L. Hayes, I. S. Martinez, L. C. Cass, J. L. Achtyl, E. A. Weiss, and F. M. Geiger, “Second harmonic generation imaging with a kHz amplifier [Invited],” Opt. Mater. Express 1(1), 57 (2011).
    [Crossref]
  12. E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
    [Crossref] [PubMed]
  13. E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).
  14. R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
    [Crossref] [PubMed]
  15. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000).
    [Crossref]
  16. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
    [Crossref] [PubMed]
  17. H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
    [Crossref]
  18. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [Crossref] [PubMed]
  19. R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003).
    [Crossref] [PubMed]
  20. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [Crossref] [PubMed]
  21. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [Crossref] [PubMed]
  22. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [Crossref] [PubMed]
  23. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
    [Crossref] [PubMed]
  24. A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
    [Crossref] [PubMed]
  25. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
    [Crossref] [PubMed]
  26. S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
    [Crossref] [PubMed]
  27. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
    [Crossref] [PubMed]
  28. P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5(1), 13–26 (2011).
    [Crossref]
  29. J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
    [Crossref] [PubMed]
  30. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
    [Crossref] [PubMed]
  31. G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
    [Crossref] [PubMed]
  32. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
    [Crossref] [PubMed]
  33. L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
    [Crossref] [PubMed]
  34. B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
    [Crossref] [PubMed]
  35. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
    [Crossref] [PubMed]
  36. J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
    [Crossref] [PubMed]
  37. D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
    [Crossref] [PubMed]
  38. R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).
  39. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express 18(11), 11917–11932 (2010).
    [Crossref] [PubMed]
  40. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
    [Crossref] [PubMed]
  41. J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
    [Crossref] [PubMed]
  42. W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
    [Crossref] [PubMed]
  43. P. Pantazis, Y. Pu, D. Psaltis, and S. Fraser, “Second harmonic generating (SHG) nanoprobes: A new tool for biomedical imaging,” Proc. SPIE 7183, 71831P (2009).
    [Crossref]
  44. R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2(9), 2532–2539 (2011).
    [Crossref] [PubMed]
  45. P. T. C. So, E. Y. S. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12), 2641–2654 (2013).
    [Crossref] [PubMed]
  46. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  47. K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38(28), 6004–6009 (1999).
    [Crossref] [PubMed]
  48. V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
    [Crossref] [PubMed]
  49. K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20(20), 21953–21967 (2012).
    [Crossref] [PubMed]
  50. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
    [Crossref] [PubMed]
  51. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18(10), 9840–9851 (2010).
    [Crossref] [PubMed]
  52. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [Crossref] [PubMed]
  53. K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
    [Crossref] [PubMed]
  54. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref] [PubMed]
  55. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref] [PubMed]
  56. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
    [Crossref] [PubMed]
  57. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [Crossref] [PubMed]
  58. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [Crossref] [PubMed]
  59. N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
    [Crossref] [PubMed]
  60. J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).
  61. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
    [Crossref]
  62. R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
    [Crossref]
  63. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref] [PubMed]
  64. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  65. C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
    [Crossref] [PubMed]
  66. L. R. Squire, F. E. Bloom, N. C. Spitzer, S. Du Lac, A. Glosh, and D. Berg, Fundamental Neuroscience (Elsevier, 2008).
  67. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
    [Crossref] [PubMed]

2014 (1)

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

2013 (6)

H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
[Crossref] [PubMed]

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

P. T. C. So, E. Y. S. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12), 2641–2654 (2013).
[Crossref] [PubMed]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

2012 (7)

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[Crossref] [PubMed]

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20(20), 21953–21967 (2012).
[Crossref] [PubMed]

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
[Crossref] [PubMed]

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref] [PubMed]

2011 (7)

O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
[Crossref] [PubMed]

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5(1), 13–26 (2011).
[Crossref]

D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
[Crossref] [PubMed]

R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2(9), 2532–2539 (2011).
[Crossref] [PubMed]

M. D. Peterson, P. L. Hayes, I. S. Martinez, L. C. Cass, J. L. Achtyl, E. A. Weiss, and F. M. Geiger, “Second harmonic generation imaging with a kHz amplifier [Invited],” Opt. Mater. Express 1(1), 57 (2011).
[Crossref]

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

2008 (4)

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

2007 (3)

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
[Crossref] [PubMed]

J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
[Crossref] [PubMed]

2006 (4)

R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
[Crossref] [PubMed]

2005 (4)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[Crossref] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
[Crossref] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[Crossref] [PubMed]

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[Crossref] [PubMed]

2004 (4)

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
[Crossref]

M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013–1022 (2004).
[Crossref]

B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
[Crossref] [PubMed]

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
[Crossref] [PubMed]

2003 (4)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

2002 (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

2000 (3)

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000).
[Crossref]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1999 (2)

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38(28), 6004–6009 (1999).
[Crossref] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

1998 (3)

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
[Crossref] [PubMed]

1995 (1)

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[Crossref] [PubMed]

1977 (1)

C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).

1974 (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Achtyl, J. L.

Araya, R.

R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).

Artigas, D.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Aubé, B.

Bahlmann, K.

Bartels, R. A.

Begue, V. J.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

Behar-Cohen, F.

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Bellve, K.

Bewersdorf, J.

Blanchard-Desce, M.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
[Crossref] [PubMed]

Bonn, M.

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
[Crossref]

Bosch, M.

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

Boucher, Y.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Bourges, J. L.

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Brillert, C.

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Brown, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Brown, R. M.

Buehler, C.

Campagnola, P. J.

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5(1), 13–26 (2011).
[Crossref]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

Cass, L. C.

Centurion, M.

Chang, C.-Y.

Chang, N.-S.

Chen, S.-J.

Cheng, J. X.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Cheng, L.-C.

Cho, K.-C.

Choi, H.

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Chung, C. Y.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Clark, H. A.

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

Conboy, J. C.

K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20(20), 21953–21967 (2012).
[Crossref] [PubMed]

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[Crossref] [PubMed]

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[Crossref] [PubMed]

M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013–1022 (2004).
[Crossref]

Côté, D.

Culic-Viskota, J.

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

Dadap, J. I.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Das, C.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

de Vera, N.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Dehen, C. J.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Delannoy, L.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

Dempsey, W. P.

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[Crossref] [PubMed]

DeWalt, E. L.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

Didier, M. E. P.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

diTomaso, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Dombeck, D. A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
[Crossref] [PubMed]

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Dong, C. Y.

Donitzky, C.

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

Downer, M. C. C.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Duff, K.

Durst, M.

Dutto, F.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

Eisenthal, K. B.

J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
[Crossref] [PubMed]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).

Ekerdt, J. G. G.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Fantini, S.

Flörsheimer, M.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

Fraser, S.

P. Pantazis, Y. Pu, D. Psaltis, and S. Fraser, “Second harmonic generating (SHG) nanoprobes: A new tool for biomedical imaging,” Proc. SPIE 7183, 71831P (2009).
[Crossref]

Fraser, S. E.

W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
[Crossref] [PubMed]

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[Crossref] [PubMed]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[Crossref] [PubMed]

Fuchs, H.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

Gannaway, J. N.

C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).

Geiger, F. M.

Gomopoulos, N.

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

Gouras, G. K.

Grange, R.

Grey, J. L.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Gualtieri, E. J.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Guo, F.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

Gusachenko, I.

Hallacoglu, B.

Hayes, P. L.

Hell, S. W.

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Hernandez, O.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Heuer, L.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Hofmann, D.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Hoogland, T. M.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[Crossref] [PubMed]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Hsieh, C. L.

Hu, X. F. F.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Hyman, B. T.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Iyer, V.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[Crossref] [PubMed]

Jain, R. K.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Jiang, J.

J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
[Crossref] [PubMed]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

Jiang, W.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

Jose, J.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Kim, K. H.

Kirber, M.

Kissick, D. J.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Kompfner, R.

C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).

König, K.

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Koninck, P. D.

Kosicki, B.

Kowalczuk, L.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[Crossref] [PubMed]

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Kriech, M. A.

Kubitscheck, U.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Kuhn, R. J.

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

Kwan, A. C.

Lamarre, I.

Lanvin, T.

Latour, G.

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[Crossref] [PubMed]

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Le Harzic, R.

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

Levi, M.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Lewis, A.

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

Lilledahl, M. B.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Lim, R. S.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Lin, C.-Y.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

Lowell, J. K. K.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Loza-Alvarez, P.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Luetgebaucks, C.

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

Macias-Romero, C.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Maloney, J.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[Crossref] [PubMed]

Martinez, I. S.

Masihzadeh, O.

McGonagle, W.

McKee, T.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Member, S.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Mertz, J.

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Moreaux, L.

Nemet, B.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

Nemet, B. A.

B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
[Crossref] [PubMed]

Nguyen, T. T.

K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20(20), 21953–21967 (2012).
[Crossref] [PubMed]

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[Crossref] [PubMed]

Nikolenko, V.

B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
[Crossref] [PubMed]

Nuriya, M.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

Oron, D.

Pagès, S.

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Pantazis, P.

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
[Crossref] [PubMed]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[Crossref] [PubMed]

P. Pantazis, Y. Pu, D. Psaltis, and S. Fraser, “Second harmonic generating (SHG) nanoprobes: A new tool for biomedical imaging,” Proc. SPIE 7183, 71831P (2009).
[Crossref]

Paschotta, R.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Petegnief, V.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Peterka, D. S.

D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
[Crossref] [PubMed]

Peterson, M. D.

Petukhov, A. V.

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
[Crossref]

Pick, R.

Plamann, K.

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Planas, A. M.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Pluen, A.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Potma, E. O.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Psaltis, D.

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

Pu, Y.

Radenovic, A.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

Reich, R.

Riemann, I.

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

Roke, S.

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
[Crossref]

Ronau, J. A.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

Rowlands, C.

P. T. C. So, E. Y. S. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12), 2641–2654 (2013).
[Crossref] [PubMed]

Russell, M.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Russell, N. M.

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

Sacconi, L.

L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
[Crossref] [PubMed]

Saggau, P.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[Crossref] [PubMed]

Sandre, O.

Savoldelli, M.

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Schanne-Klein, M. C.

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[Crossref] [PubMed]

Schlup, P.

Schreiber, G.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Seed, B.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Shank, C. V.

Sheppard, C. J. R.

Silberberg, Y.

Simpson, G. J.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Sly, K. L.

So, P. T.

So, P. T. C.

Sohler, W.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[Crossref] [PubMed]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Suhalim, J. L.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Sullivan, S. Z.

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

Sun, Q.

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

Takahashi, H.

D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
[Crossref] [PubMed]

Tal, E.

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Therrien, O. D.

Thompson, D. H.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Tromberg, B. J.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

van Howe, J.

Vaziri, A.

Verbeek, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Walsh, D.

C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).

Wampler, R. D.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Wang, H. F.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

Webb, W. W.

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[Crossref] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
[Crossref] [PubMed]

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

Weiss, E. A.

Wierschem, M.

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

Wu, D.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[Crossref] [PubMed]

Wüllner, C.

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

Wuskell, J. P.

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

Xu, C.

Yen, W.-C.

Yew, E. Y. S.

Yuste, R.

D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
[Crossref] [PubMed]

J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
[Crossref] [PubMed]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).

B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
[Crossref] [PubMed]

Zhu, G.

Zipfel, W.

Act. Cryst. D (1)

E. L. DeWalt, V. J. Begue, J. A. Ronau, S. Z. Sullivan, C. Das, and G. J. Simpson, “Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains,” Act. Cryst. D 69, 74–81 (2013).

Anal. Chem. (1)

T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[Crossref]

Bioessays (1)

W. P. Dempsey, S. E. Fraser, and P. Pantazis, “SHG nanoprobes: Advancing harmonic imaging in biology,” Bioessays 34(5), 351–360 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Biophys. J. (10)

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

E. J. Gualtieri, F. Guo, D. J. Kissick, J. Jose, R. J. Kuhn, W. Jiang, and G. J. Simpson, “Detection of membrane protein two-dimensional crystals in living cells,” Biophys. J. 100(1), 207–214 (2011).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, V. Petegnief, N. de Vera, O. Hernandez, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons,” Biophys. J. 104(5), 968–975 (2013).
[Crossref] [PubMed]

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[Crossref] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

P. T. C. So, E. Y. S. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12), 2641–2654 (2013).
[Crossref] [PubMed]

J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J. 93(5), L26–L28 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

J. I. Dadap, X. F. F. Hu, N. M. Russell, J. G. G. Ekerdt, J. K. K. Lowell, M. C. C. Downer, M. Russell, and S. Member, “Analysis of second-harmonic generation by unamplified, high-repetition-rate, ultrashort laser pulses at Si(001) interfaces,” IEEE J. Quantum Electron. 1, 1145–1155 (1995).

C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “Scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13, 912 (1977).

J. Am. Chem. Soc. (3)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[Crossref] [PubMed]

H. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, and L. M. Loew, “Second harmonic generation properties of fluorescent polymer-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 122(41), 10234–10235 (2000).
[Crossref]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H. F. Wang, D. H. Thompson, J. X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, “Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345,” J. Appl. Phys. 102(11), 114701 (2007).
[Crossref]

J. Biomed. Opt. (1)

B. A. Nemet, V. Nikolenko, and R. Yuste, “Second harmonic imaging of membrane potential of neurons with retinal,” J. Biomed. Opt. 9(5), 873–881 (2004).
[Crossref] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

J. Neurophysiol. (1)

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[Crossref] [PubMed]

J. Neurosci. (1)

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24(4), 999–1003 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5(1), 13–26 (2011).
[Crossref]

Nano Lett. (1)

C. Macias-Romero, M. E. P. Didier, L. Delannoy, F. Dutto, A. Radenovic, and S. Roke, “Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales,” Nano Lett. 14, 2552–2557 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Nat. Med. (1)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

J. Ĉulić-Viskota, W. P. Dempsey, S. E. Fraser, and P. Pantazis, “Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish,” Nat. Protoc. 7(9), 1618–1633 (2012).
[Crossref] [PubMed]

Neuron (1)

D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Opt. Exp. (1)

N. Gomopoulos, C. Luetgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Exp. 21, 815–821 (2013).
[Crossref] [PubMed]

Opt. Express (9)

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express 18(11), 11917–11932 (2010).
[Crossref] [PubMed]

K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20(20), 21953–21967 (2012).
[Crossref] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18(10), 9840–9851 (2010).
[Crossref] [PubMed]

K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
[Crossref] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
[Crossref] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[Crossref] [PubMed]

A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
[Crossref] [PubMed]

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref] [PubMed]

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of the effective suceptibility,” Phys. Rev. B 70(11), 115106 (2004).
[Crossref]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

G. Latour, L. Kowalczuk, M. Savoldelli, J. L. Bourges, K. Plamann, F. Behar-Cohen, and M. C. Schanne-Klein, “Hyperglycemia-induced abnormalities in rat and human corneas: The potential of second harmonic generation microscopy,” PLoS ONE 7(11), e48388 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (6)

L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006).
[Crossref] [PubMed]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[Crossref] [PubMed]

R. Araya, K. B. Eisenthal, and R. Yuste, “Dendritic spines linearize the summation of excitatory potentials,” Proc. Natl. Acad. Sci. U.S.A. 103, 18779–18804 (2006).

Proc. SPIE (1)

P. Pantazis, Y. Pu, D. Psaltis, and S. Fraser, “Second harmonic generating (SHG) nanoprobes: A new tool for biomedical imaging,” Proc. SPIE 7183, 71831P (2009).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Thin Solid Films (1)

M. Flörsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998).
[Crossref]

Other (2)

B. Masters, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).

L. R. Squire, F. E. Bloom, N. C. Spitzer, S. Du Lac, A. Glosh, and D. Berg, Fundamental Neuroscience (Elsevier, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Calculated imaging throughput. (a) The imaging throughput for a given fluence (proportional to the number of emitted photons per image) for a scanning imaging system (black line), a wide-field imaging system as described here (red line), and a 1 kHz wide-field system (green line). (b) Calculation of the delivered fluence for a given power for the three different systems; the illumination parameters can be found in the text. The arrows in (b) indicate the upper limits quoted in different works: 1 – This work; 2 – in [11]; 3 – in [40] and 4 – in [23] (4). The colored area illustrates for which fluences unstained CHO cells start to be perturbed in growth (yellow) and permanently damaged (red) [62]. (c) For comparison, the corresponding delivered average intensities.
Fig. 2
Fig. 2 Optical Layout. (a) The optical layout of the microscope. Symbols: P: polarizer, SF: spatial filter, M: mirror, λ/2: half wave plate, L: lens, Obj: objective lens, TL: tube lens, F: filter, D: Detector. The sample cell is configured with two glass coverslips in between which a liquid flow can be established. (b) The spectrum of the SHG beam at the sample. (c) The intensity cross-correlation, measured with a single BaTiO3 nanoparticle in the focus and varying the temporal delay.
Fig. 3
Fig. 3 Measured imaging throughput. (a) Measured contrast in the images recorded from the same position of the same sample in four different systems: wide-field (200 kHz, gated detection as proposed here, blue and red curves), a scanning microscope (Leica TCS SP5 with 1028 nm, 88 MHz, 190 fs laser pulses illumination, a 1.2 NA 20x water immersion objective, a scanning rate of 1000 Hz/line, image size of 256 x 256 pixels, and collecting NA of 0.9), and a wide-field 1 kHz geometry with a normal CCD camera. The used pulse power and repetition rate are given in the legend. The blue data points were recorded with the intensifier and the electronic amplification of the camera both turned on, while the red data points were recorded with only the intensifier on. The inset shows an image of the nanoparticle sample corresponding to the largest red data point. The horizontal blue line indicates the position for which the intensity cross-sections are displayed in (b). (b) Intensity (raw data) versus position for various acquisition times corresponding to the red data points in (a).
Fig. 4
Fig. 4 Label-free SHG imaging of living neurons. (a) Schematic of the flow chamber. The neurons are placed on a glass coverslip (as indicated by the box) under flow of HEPES buffer solution. The polarization configuration of the beams was SSS. (b) A bright field image of a part of the neuronal culture that was subsequently imaged with SHG. The image was obtained by placing a white light source in the beam path of one of the incoming beams. (c) The spectrum of the part of the cell indicated by the red circle in (b), collected by a spectrometer placed before the detector. (d) Inverted image of the endogenous two-photon fluorescence signal. (e) Inverted image of the endogenous SHG signal, obtained by placing a band pass filter (515/BP10) before the camera. Dark regions correspond to high intensities. (f) Composite image of (d) and (e), showing both the fluorescence (blue) and SHG signal (yellow). Images (d) and (e) were obtained with a 6 s acquisition time and a fluence of 7.3 mJ/cm2 (or averaged intensity <I> = 147 W/cm2). All images represent living neurons, confirmed after every experiment by monitoring in dark-field physiological changes as induced by a neurotransmitter.

Tables (1)

Tables Icon

Table 1 Comparison of the measurements in Fig. 3(a) with those of the literature

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N i | Γ (2) | 2 E p,i 2 τ i A i f i ,
N wf N s =n f wf f s .

Metrics