Abstract

We report a novel “single trench fiber” design for mode area scaling of the fundamental mode while offering effective single mode operation for a compact fiber laser device. This fiber design allows very high suppression of the higher order modes by offering high loss and power delocalization. It has the advantages of low cost and easy fabrication thanks to all solid fiber design, cylindrical symmetry, and higher refractive index of core as that of the cladding. A Yb-doped single trench fiber with a 40µm core diameter has been fabricated from modified chemical vapor deposition process in conjunction with solution-doping offering an effective mode area of as large as ~1,000µm2 at 1060nm for the bend radius of 20cm. Detailed characterizations confirm a robust single mode behavior of the fiber. Comparative analysis with other fiber designs shows significant performance enhancement of effective single mode operation suitable for fiber laser applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  4. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27(15), 3010–3016 (2009).
    [Crossref]
  5. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
    [Crossref] [PubMed]
  6. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [Crossref] [PubMed]
  7. R. A. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Resonant bend loss in leakage channel fibers,” Opt. Lett. 37(15), 3147–3149 (2012).
    [Crossref] [PubMed]
  8. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
    [Crossref] [PubMed]
  9. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
    [Crossref]
  10. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  11. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref]
  12. K. Borzycki and K. Schuster, “Arc Fusion Splicing of Photonic Crystal Fibres,” in Photonic Crystals – Introduction, Applications and Theory, A. Massaro, ed. (InTech, 2012), pp. 175–200.
  13. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [Crossref] [PubMed]
  14. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett. 36(18), 3566–3568 (2011).
    [Crossref] [PubMed]
  15. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt. 10(1), 015303 (2008).
    [Crossref]
  16. M. Devautour, P. Roy, and S. Fevrier, “3D Modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” in Conference on Lasers and Electro-Optics(CLEO), Baltimore, MD, 2009, paper JWA.54.
    [Crossref]
  17. D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
    [Crossref] [PubMed]
  18. D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multi-trench fibers,” Opt. Express 21(22), 26663–26670 (2013).
    [Crossref] [PubMed]
  19. D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
    [Crossref]
  20. D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
    [Crossref] [PubMed]
  21. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [Crossref] [PubMed]
  22. Y. A. Uspenskii, E. E. Uzorin, A. V. Vinogradov, M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, R. Jamier, and S. Février, “Effect of polymer coating on leakage losses in Bragg fibers,” Opt. Lett. 32(10), 1202–1204 (2007).
    [Crossref] [PubMed]
  23. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
    [Crossref]
  24. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  25. D. Jain, C. Baskiotis, J. Kim, and J. K. Sahu, “First demonstration of single trench fiber for delocalization of higher order modes,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, Calif., 2014, paper SF1N.1.
    [Crossref]
  26. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [Crossref] [PubMed]
  27. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17(13), 2080–2085 (1978).
    [Crossref] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).
  29. J. M. Fini, R. T. Bise, M. F. Yan, A. D. Yablon, and P. W. Wisk, “Distributed fiber filter based on index-matched coupling between core and cladding,” Opt. Express 13(25), 10022–10033 (2005).
    [Crossref] [PubMed]
  30. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
    [Crossref] [PubMed]
  31. S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo, and L. Dong, “Design optimization of large-mode-area all-solid photonic bandgap fibers for high-power laser applications,” J. Lightwave Technol. 32(3), 440–449 (2014).
    [Crossref]
  32. J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
    [Crossref] [PubMed]
  33. C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Extending the effective area of coiled all-solid silica single-mode Bragg fibers,” in Proceedings of ECOC, Geneva, Switzerland, 2011, paper We.10.P1.02.

2014 (6)

2013 (5)

2012 (2)

R. A. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Resonant bend loss in leakage channel fibers,” Opt. Lett. 37(15), 3147–3149 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

2011 (2)

2009 (4)

2008 (2)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt. 10(1), 015303 (2008).
[Crossref]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

1982 (1)

1978 (1)

Aleshkina, S. S.

Alkeskjold, T. T.

Barankov, R. A.

Baskiotis, C.

Bian, B.

Bise, R. T.

Broeng, J.

Bubnov, M. M.

Chen, X.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Denisov, A. N.

Dianov, E. M.

Dong, L.

Dunn, C.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Fevrier, S.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

Février, S.

Fini, J. M.

Foy, P.

Galvanauskas, A.

Gaponov, D. A.

Gray, S.

Gu, G.

Guryanov, A. N.

Hawkins, T.

Hawkins, T. W.

Hu, I.-N.

Jain, D.

Jakobsen, C.

Jamier, R.

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jones, M.

Jung, Y.

Kalichevsky-Dong, M. T.

Kaplan, A.

Kashiwagi, M.

Kawakami, S.

Kim, J.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
[Crossref] [PubMed]

Kong, F.

Kumar, A.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt. 10(1), 015303 (2008).
[Crossref]

Laptev, A. Y.

Li, M.-J.

Liem, A.

Likhachev, M. E.

Limpert, J.

Liu, A.

Lu, J.

Lyngsø, J. K.

Ma, X.

Marcuse, D.

Maruyama, H.

Matsuo, S.

May-Smith, T. C.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

Nagano, K.

Nicholson, J. W.

Nishida, S.

Nolte, S.

Olausson, C. B.

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

Otto, H.-J.

Parsons, J.

Petersson, A.

Popov, N. L.

Pryamikov, A. D.

Ramachandran, S.

Rastogi, V.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt. 10(1), 015303 (2008).
[Crossref]

Reich, M.

Sahu, J. K.

Saitoh, K.

Saitoh, S.

Salganskii, M. Y.

Samson, B.

Schmidt, O.

Schreiber, T.

Semjonov, S. L.

Shi, Y.

Shirakawa, A.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

Tünnermann, A.

Ueda, K.

Uspenskii, Y. A.

Uzorin, E. E.

Vinogradov, A. V.

Walton, D. T.

Wang, J.

Wei, K.

Wirth, C.

Wisk, P. W.

Yablon, A. D.

Yan, M. F.

Zellmer, H.

Zenteno, L. A.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zhang, Z.

Zhu, C.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (3)

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902909 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt. 10(1), 015303 (2008).
[Crossref]

Light: Sci. App. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. App. 1(4), 1–5 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (13)

T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
[Crossref] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
[Crossref] [PubMed]

D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
[Crossref] [PubMed]

D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multi-trench fibers,” Opt. Express 21(22), 26663–26670 (2013).
[Crossref] [PubMed]

J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
[Crossref] [PubMed]

J. M. Fini, R. T. Bise, M. F. Yan, A. D. Yablon, and P. W. Wisk, “Distributed fiber filter based on index-matched coupling between core and cladding,” Opt. Express 13(25), 10022–10033 (2005).
[Crossref] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

M. Devautour, P. Roy, and S. Fevrier, “3D Modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” in Conference on Lasers and Electro-Optics(CLEO), Baltimore, MD, 2009, paper JWA.54.
[Crossref]

K. Borzycki and K. Schuster, “Arc Fusion Splicing of Photonic Crystal Fibres,” in Photonic Crystals – Introduction, Applications and Theory, A. Massaro, ed. (InTech, 2012), pp. 175–200.

D. Jain, C. Baskiotis, J. Kim, and J. K. Sahu, “First demonstration of single trench fiber for delocalization of higher order modes,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, Calif., 2014, paper SF1N.1.
[Crossref]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).

C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Extending the effective area of coiled all-solid silica single-mode Bragg fibers,” in Proceedings of ECOC, Geneva, Switzerland, 2011, paper We.10.P1.02.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Loss or power fraction in cladding for FM and HOM as a function of bend radius in a LMA (b) Effective area achieved as a function of bend radius for FM.

Fig. 2
Fig. 2

Schematic of 2-D cross section of the fiber showing core and cladding with (a) low index coating (b) PML having same index as of cladding (c) asymmetrical interface of cladding and low index coating (d) asymmetrical interface of small thickness of inner cladding and low index coating.

Fig. 3
Fig. 3

(a) Schematic of refractive index profile of the STF. (b) Schematic cross-section of the STF. Green and blue colors represent high and low-refractive index regions respectively.

Fig. 4
Fig. 4

(a) Schematic of RIP of low NA-SIF in unbent and bent case. (b) and (c) normalized electric field of different modes in bent and unbent case with their losses and power fractions in core for 40µm core diameter SIF with Δn = 0.0005 and 20cm bend radius (d) Schematic of RIP of STF in unbent and bent case. (e) and (f) normalized electric field of various modes in bent and unbent case with their losses and power fractions in core for 40µm core diameter SIF with Δn = 0.0005, t = 8µm, d = 6µm, and 20cm bend radius.

Fig. 5
Fig. 5

(a) Loss of the FM and the least lossy HOM of fiber, (b) Power fraction in core for FM and least lossy HOM of fiber, and (c) Aeff of the FM of fiber for different resonant ring and trench thicknesses for 40µm core diameter STF with Δn = 0.0005 at 20cm bend radius.

Fig. 6
Fig. 6

Losses of the FM and the least lossy HOM of fiber. We have considered only higher order modes having power fraction more than 50% in core.

Fig. 7
Fig. 7

(a) RIP of Yb and codopants doped preform. Inset shows the microscope image of fiber end. (b) White light absorption spectrum of a 1.55m long fiber.

Fig. 8
Fig. 8

(a) Experiment set-up used for single-mode characterization of STF (b) output with respect to optimum launching of single mode in loosely coiled and bent at 20cm conditions (c) output power with respect to offset launching of single mode input (d) output beam profile with respect to offset launching of single mode input.

Fig. 9
Fig. 9

(a) profile of input multimode beam (b) output beam with respect to input beam (c) and (d) binary phase plate to generate pure LP11 and LP21 mode (e) and (f) shows the output profile with respect to pure LP11 mode (g) shows the output profile with respect to pure LP21 mode.

Fig. 10
Fig. 10

(a) Experimental set-up used for calculating LP11 bend loss (b) output power of 57cm long fiber with respect to LP11 mode launch.

Fig. 11
Fig. 11

(a) Experimental set-up used for fiber laser efficiency (b) slope efficiency of 3.3m long fiber. Inset shows the profile of output beam (c) measured spectrum of output beam at different power levels.

Tables (2)

Tables Icon

Table 1 Showing Loss and Power Fraction in Core of FM and Other HOMs for Different Resonant Ring Thickness (d) and Trench Thickness (t)

Tables Icon

Table 2 Comparison of Different Fiber Designs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 eq ( r,φ )= n 2 ( r )*( 1+ 2r ρR cosφ ),

Metrics