Abstract

We demonstrate a liquid droplet which can do a reciprocating movement in a cylindrical hole. The droplet in the hole exhibits a lens character. By applying a voltage, the border of the droplet is stretched to expand by the generated dielectric force. Due to the fixed volume, the dome of the droplet in the hole has to move toward the substrate without changing its surface profile. Therefore, the focal length of the droplet remains unchanged although the focal point is shifted. Once the voltage is removed, the droplet can return to its original state. The droplet with such a movement functions as an adaptive lens. Our lens can provide a high resolution (~114 lp/mm) whether or not it is actuated. The dynamic response time is reasonably fast. Integrating with a solid lens, the compound lens can provide a variable focal length.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deformable liquid droplets for optical beam control

Hongwen Ren, Su Xu, and Shin-Tson Wu
Opt. Express 18(11) 11904-11910 (2010)

Dielectric liquid lens with chevron-patterned electrode

Boya Jin, Hongwen Ren, and Wing-Kit Choi
Opt. Express 25(26) 32411-32419 (2017)

Adaptive dielectric liquid lens

Hongwen Ren, Haiqing Xianyu, Su Xu, and Shin-Tson Wu
Opt. Express 16(19) 14954-14960 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [Crossref]
  2. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  3. G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [Crossref]
  4. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [Crossref] [PubMed]
  5. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [PubMed]
  6. Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
    [Crossref]
  7. M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
    [Crossref] [PubMed]
  8. J. Kim, J. Kim, J.-H. Na, B. Lee, and S.-D. Lee, “Liquid crystal-based square lens array with tunable focal length,” Opt. Express 22(3), 3316–3324 (2014).
    [Crossref] [PubMed]
  9. N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref] [PubMed]
  10. H. Ren, D. W. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  11. Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
    [Crossref]
  12. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
    [Crossref]
  13. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  14. D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
    [Crossref]
  15. W. Xiao and S. Hardt, “An adaptive liquid microlens driven by a ferrofluidic transducer,” J. Micromech. Microeng. 20(5), 055032 (2010).
    [Crossref]
  16. H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
    [Crossref]
  17. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [Crossref] [PubMed]
  18. L. Miccio, M. Paturzo, S. Grilli, V. Vespini, and P. Ferraro, “Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting,” Opt. Lett. 34(7), 1075–1077 (2009).
    [Crossref] [PubMed]
  19. B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  20. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [Crossref]
  21. S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  22. N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
    [Crossref]
  23. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  24. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  25. K. Y. Hung, C. C. Fan, F. G. Tseng, and Y. K. Chen, “Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic,” Opt. Express 18(6), 6014–6023 (2010).
    [Crossref] [PubMed]
  26. S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
    [Crossref] [PubMed]
  27. Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
    [Crossref] [PubMed]
  28. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
    [Crossref]
  29. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  30. K. H. Kang, “How electrostatic fields change contact angle in electrowetting,” Langmuir 18(26), 10318–10322 (2002).
    [Crossref]
  31. M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
    [Crossref]
  32. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  33. E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA, 2002).
  34. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [Crossref] [PubMed]

2014 (2)

J. Kim, J. Kim, J.-H. Na, B. Lee, and S.-D. Lee, “Liquid crystal-based square lens array with tunable focal length,” Opt. Express 22(3), 3316–3324 (2014).
[Crossref] [PubMed]

M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

2013 (3)

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

2012 (4)

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[PubMed]

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

2011 (3)

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
[Crossref]

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

2010 (2)

2009 (4)

2008 (2)

2007 (3)

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

H. Ren, D. W. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

2005 (2)

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2004 (1)

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2003 (2)

2002 (2)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

K. H. Kang, “How electrostatic fields change contact angle in electrowetting,” Langmuir 18(26), 10318–10322 (2002).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Anderson, P. A.

Ayras, P.

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Berge, B.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Chen, Y. K.

Cheng, C. C.

Cheng, H.-C.

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Chronis, N.

Dai, H. T.

De Nicola, S.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Fan, C. C.

Fan, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Ferraro, P.

Finizio, A.

Fox, D. W.

Fuh, Y.-K.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Grilli, S.

Hardt, S.

W. Xiao and S. Hardt, “An adaptive liquid microlens driven by a ferrofluidic transducer,” J. Micromech. Microeng. 20(5), 055032 (2010).
[Crossref]

Heikenfeld, J.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
[Crossref]

Hendriks, H. W.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Honkanen, S.

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Hou, L.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
[Crossref]

Huang, W.-C.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Huang, Y. P.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y.-C.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Hung, K. Y.

Isago, R.

D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
[Crossref]

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Jeong, K.-H.

Jiang, H.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Kang, K. H.

K. H. Kang, “How electrostatic fields change contact angle in electrowetting,” Langmuir 18(26), 10318–10322 (2002).
[Crossref]

Kawamura, M.

Kim, J.

Koyama, D.

D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
[Crossref]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Kuiper, S.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, B.

Lee, L. P.

Lee, S.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Lee, S.-D.

Lee, Y.-S.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Levi, S.

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Li, G.

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Li, Y.

Lin, H.-C.

Lin, Y.-H.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[PubMed]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Liu, G. L.

Liu, Y.

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Liu, Y. J.

Lu, Y.-S.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Luo, D.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Miccio, L.

Mugele, F.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Na, J.-H.

Nakamura, K.

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
[Crossref]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Paturzo, M.

Peseux, J.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Peyghambarian, N.

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Ren, H.

Sato, S.

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Smith, N. R.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
[Crossref]

Sun, X. W.

Tseng, F. G.

Tu, H.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Vespini, V.

Wang, B.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Wang, Q.

M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Wu, B.

Wu, S. T.

Wu, S.-T.

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Xianyu, H.

Xiao, W.

W. Xiao and S. Hardt, “An adaptive liquid microlens driven by a ferrofluidic transducer,” J. Micromech. Microeng. 20(5), 055032 (2010).
[Crossref]

Xu, M.

M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Xu, S.

Xu, Y.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Ye, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Yeh, J. A.

Yoo, L.

M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

Zhang, J.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
[Crossref]

Appl. Phys. Lett. (6)

G. Li, P. Ayras, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

IEEE J. Disp. Technol. (1)

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” IEEE J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

J. Dis. Tech. (1)

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Dis. Tech. 5(11), 411–413 (2009).
[Crossref]

J. Micromech. Microeng. (1)

W. Xiao and S. Hardt, “An adaptive liquid microlens driven by a ferrofluidic transducer,” J. Micromech. Microeng. 20(5), 055032 (2010).
[Crossref]

J. Opt. (1)

M. Xu, H. Ren, L. Yoo, and Q. Wang, “An adaptive liquid lens with radial interdigitated electrode,” J. Opt. 16(10), 105601 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Jpn. J. Appl. Phys. (2)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys. 50(7S7s), 07HE26 (2011).
[Crossref]

Langmuir (1)

K. H. Kang, “How electrostatic fields change contact angle in electrowetting,” Langmuir 18(26), 10318–10322 (2002).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Commun. (2)

H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Opt. Express (14)

N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref] [PubMed]

H. Ren, D. W. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
[Crossref] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[Crossref] [PubMed]

K. Y. Hung, C. C. Fan, F. G. Tseng, and Y. K. Chen, “Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic,” Opt. Express 18(6), 6014–6023 (2010).
[Crossref] [PubMed]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[PubMed]

S. Xu, H. Ren, and S. T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

J. Kim, J. Kim, J.-H. Na, B. Lee, and S.-D. Lee, “Liquid crystal-based square lens array with tunable focal length,” Opt. Express 22(3), 3316–3324 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (1)

E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA, 2002).

Supplementary Material (1)

» Media 1: MP4 (460 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Key parts of the liquid lens and the crosess-sectional structure of the lens cell in the voltage-off and voltage-on states.
Fig. 2
Fig. 2 (a) Surface profile of the droplet in the V = 0 and V = V1 states and (b) integrating with one lens for a variable focal length.
Fig. 3
Fig. 3 The ITO electrode is patterned with radial-interdigitated structure.
Fig. 4
Fig. 4 Images of the object observed through the liquid lens with different voltages. (a) V = 0 (Media 1), (b) V = 40 Vrms, (c) V = 60 Vrms, (d) V = 80 Vrms, (e) V = 100 Vrms, and (f) V = 120 Vrms.
Fig. 5
Fig. 5 Images of a resolution target observed using an optical microscope. (a) focus at V = 0, (b) defocus at V = 80 Vrms, and (c) refocus at V = 80 Vrms.
Fig. 6
Fig. 6 Droplet shift in the hole at various voltages
Fig. 7
Fig. 7 Dynamic response of the liquid lens impacted by 100-Vrms voltage pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos θ 0 = γ SV γ SL γ LV
f L = r n L n M
1 f = 1 f L + 1 f S d f L f S

Metrics