P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

M. J. Schmidberger, D. Novoa, F. Biancalana, P. St. J. Russell, and N. Y. Joly, “Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities,” Opt. Express 22, 3045–3053 (2014).

[Crossref]
[PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).

[Crossref]
[PubMed]

Y. K. Chembo and C. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).

[Crossref]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

I. V. Barashenkov and E. V. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 44465211 (2011).

[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35, 306–308 (2010).

[Crossref]
[PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

D. Gomila, A. J. Scroggie, and W. J. Firth, “Bifurcation structure of dissipative solitons,” Physica D 227, 70–77 (2007).

[Crossref]

R. Richter and I. V. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).

[Crossref]
[PubMed]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

B. Schapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J.Quantum Electron. 39, 227–237 (2003).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

N. V. Alexeeva and I. V. Barashenkov, “Impurity-Induced Satabilization of Solitons in Arrays of Parametrically Driven Nonlinear Oscillators,” Phys. Rev. Lett. 84, 3053–3056 (2000).

[Crossref]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

P. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature 382, 793–796 (1996).

[Crossref]

I. V. Barashenkov and Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).

[Crossref]

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Comm. 91, 401–407 (1992).

[Crossref]

O. Thual and S. Fauve, “Localized structures generated by subcritical instabilities,” J. Phys. 49, 1829–1833 (1988).

[Crossref]

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).

[Crossref]
[PubMed]

B. Schapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J.Quantum Electron. 39, 227–237 (2003).

[Crossref]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

N. V. Alexeeva and I. V. Barashenkov, “Impurity-Induced Satabilization of Solitons in Arrays of Parametrically Driven Nonlinear Oscillators,” Phys. Rev. Lett. 84, 3053–3056 (2000).

[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

I. V. Barashenkov and E. V. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 44465211 (2011).

[Crossref]

R. Richter and I. V. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).

[Crossref]
[PubMed]

N. V. Alexeeva and I. V. Barashenkov, “Impurity-Induced Satabilization of Solitons in Arrays of Parametrically Driven Nonlinear Oscillators,” Phys. Rev. Lett. 84, 3053–3056 (2000).

[Crossref]

I. V. Barashenkov and Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).

[Crossref]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

Y. K. Chembo and C. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).

[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “Dissipative soliton excitability induced by spatial inhomogeneities and drift,” Phys. Rev. Lett.110, 064103 (1–5) (2013).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “On the drif-defect mechanism for dissipative soliton excitability,” (in preparation).

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

O. Thual and S. Fauve, “Localized structures generated by subcritical instabilities,” J. Phys. 49, 1829–1833 (1988).

[Crossref]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

D. Gomila, A. J. Scroggie, and W. J. Firth, “Bifurcation structure of dissipative solitons,” Physica D 227, 70–77 (2007).

[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35, 306–308 (2010).

[Crossref]
[PubMed]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

G. Kozyreff and L. Gelens, “Cavity solitons and localized patterns in a finite-size optical cavity,” Phys. Rev. A84, 023819 (1–5) (2011).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

D. Gomila, A. J. Scroggie, and W. J. Firth, “Bifurcation structure of dissipative solitons,” Physica D 227, 70–77 (2007).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “On the drif-defect mechanism for dissipative soliton excitability,” (in preparation).

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “Dissipative soliton excitability induced by spatial inhomogeneities and drift,” Phys. Rev. Lett.110, 064103 (1–5) (2013).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Comm. 91, 401–407 (1992).

[Crossref]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

M. J. Schmidberger, D. Novoa, F. Biancalana, P. St. J. Russell, and N. Y. Joly, “Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities,” Opt. Express 22, 3045–3053 (2014).

[Crossref]
[PubMed]

M. Schmidberger, W. Chang, P. St. J. Russell, and N. Y. Joly, “Influence of timing jitter on nonlinear dynamics of a photonic crystal fiber ring cavity,” Opt. Lett. 37, 3576–3578 (2012).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).

[Crossref]
[PubMed]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

G. Kozyreff and L. Gelens, “Cavity solitons and localized patterns in a finite-size optical cavity,” Phys. Rev. A84, 023819 (1–5) (2011).

[Crossref]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

B. Schapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J.Quantum Electron. 39, 227–237 (2003).

[Crossref]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).

[Crossref]
[PubMed]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “Dissipative soliton excitability induced by spatial inhomogeneities and drift,” Phys. Rev. Lett.110, 064103 (1–5) (2013).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “On the drif-defect mechanism for dissipative soliton excitability,” (in preparation).

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

P. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature 382, 793–796 (1996).

[Crossref]

Y. K. Chembo and C. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “On the drif-defect mechanism for dissipative soliton excitability,” (in preparation).

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “Dissipative soliton excitability induced by spatial inhomogeneities and drift,” Phys. Rev. Lett.110, 064103 (1–5) (2013).

[Crossref]
[PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

R. Richter and I. V. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).

[Crossref]
[PubMed]

M. J. Schmidberger, D. Novoa, F. Biancalana, P. St. J. Russell, and N. Y. Joly, “Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities,” Opt. Express 22, 3045–3053 (2014).

[Crossref]
[PubMed]

M. Schmidberger, W. Chang, P. St. J. Russell, and N. Y. Joly, “Influence of timing jitter on nonlinear dynamics of a photonic crystal fiber ring cavity,” Opt. Lett. 37, 3576–3578 (2012).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

B. Schapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J.Quantum Electron. 39, 227–237 (2003).

[Crossref]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

D. Gomila, A. J. Scroggie, and W. J. Firth, “Bifurcation structure of dissipative solitons,” Physica D 227, 70–77 (2007).

[Crossref]

I. V. Barashenkov and Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).

[Crossref]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

P. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature 382, 793–796 (1996).

[Crossref]

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

O. Thual and S. Fauve, “Localized structures generated by subcritical instabilities,” J. Phys. 49, 1829–1833 (1988).

[Crossref]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35, 306–308 (2010).

[Crossref]
[PubMed]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Comm. 91, 401–407 (1992).

[Crossref]

P. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature 382, 793–796 (1996).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Comm. 91, 401–407 (1992).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

I. V. Barashenkov and E. V. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 44465211 (2011).

[Crossref]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of noise on excitable dissipative solitons,” Eur. Phys. J. D 59, 37–42 (2010).

[Crossref]

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998).

[Crossref]

B. Schapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J.Quantum Electron. 39, 227–237 (2003).

[Crossref]

O. Thual and S. Fauve, “Localized structures generated by subcritical instabilities,” J. Phys. 49, 1829–1833 (1988).

[Crossref]

I. V. Barashenkov and E. V. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 44465211 (2011).

[Crossref]

P. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature 382, 793–796 (1996).

[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).

[Crossref]
[PubMed]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, Ph. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Phot. 4, 471–476 (2010).

[Crossref]

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Comm. 91, 401–407 (1992).

[Crossref]

M. J. Schmidberger, D. Novoa, F. Biancalana, P. St. J. Russell, and N. Y. Joly, “Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities,” Opt. Express 22, 3045–3053 (2014).

[Crossref]
[PubMed]

F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013).

[Crossref]
[PubMed]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).

[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39, 2971–2974 (2014).

[Crossref]
[PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).

[Crossref]
[PubMed]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Mller, U. Güsele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).

[Crossref]
[PubMed]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35, 306–308 (2010).

[Crossref]
[PubMed]

M. Schmidberger, W. Chang, P. St. J. Russell, and N. Y. Joly, “Influence of timing jitter on nonlinear dynamics of a photonic crystal fiber ring cavity,” Opt. Lett. 37, 3576–3578 (2012).

[Crossref]
[PubMed]

L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007).

[Crossref]

L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008).

[Crossref]

Y. K. Chembo and C. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).

[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).

[Crossref]

A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, “Effects of a localized beam on the dynamics of excitable cavity solitons,” Phys. Rev. A 78, 053821 (2008).

[Crossref]

I. V. Barashenkov and Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).

[Crossref]

M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997).

[Crossref]

E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, and M. Taki, “Experimental evidence of absolute and convective instabilities in optics,” Phys. Rev. Lett. 92, 043901 (2004).

[Crossref]
[PubMed]

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).

[Crossref]
[PubMed]

R. Richter and I. V. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).

[Crossref]
[PubMed]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).

[Crossref]
[PubMed]

N. V. Alexeeva and I. V. Barashenkov, “Impurity-Induced Satabilization of Solitons in Arrays of Parametrically Driven Nonlinear Oscillators,” Phys. Rev. Lett. 84, 3053–3056 (2000).

[Crossref]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator defects as sources of drifting cavity solitons,” Phys. Rev. Lett. 102, 163901 (2009); ;E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).

[Crossref]
[PubMed]

D. Gomila, A. J. Scroggie, and W. J. Firth, “Bifurcation structure of dissipative solitons,” Physica D 227, 70–77 (2007).

[Crossref]

K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern formation by interacting chemical fronts,” Science 261, 192–194 (1993).

[Crossref]
[PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).

[Crossref]
[PubMed]

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser, “The Forced van der Pol Equation II: Canards in the Reduced System,” SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003).

[Crossref]

“Dissipative Solitons: From Optics to Biology and Medicine,” Lecture Notes in Physics, Vol. 751 edited by N. Akhmediev and A. Ankiewicz, eds. (Springer, 2008).

P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A89, 043813 (1–12) (2014).

[Crossref]

G. Kozyreff and L. Gelens, “Cavity solitons and localized patterns in a finite-size optical cavity,” Phys. Rev. A84, 023819 (1–5) (2011).

[Crossref]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “Dissipative soliton excitability induced by spatial inhomogeneities and drift,” Phys. Rev. Lett.110, 064103 (1–5) (2013).

[Crossref]
[PubMed]

P. Parra-Rivas, D. Gomila, M. A. Matías, and P. Colet, “On the drif-defect mechanism for dissipative soliton excitability,” (in preparation).