Abstract

Lithium Niobate (LN) is an important nonlinear optical material. Here we demonstrate LN microdisk resonators that feature optical quality factor ~105, realized using robust and scalable fabrication techniques, that operate over a wide wavelength range spanning visible and near infrared. Using our resonators, and leveraging LN’s large second order optical nonlinearity, we demonstrate on-chip second harmonic generation with a conversion efficiency of 0.109 W−1.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk

Shijie Liu, Yuanlin Zheng, and Xianfeng Chen
Opt. Lett. 42(18) 3626-3629 (2017)

Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency

Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 3(10) 1126-1131 (2016)

On-chip diamond Raman laser

Pawel Latawiec, Vivek Venkataraman, Michael J. Burek, Birgit J. M. Hausmann, Irfan Bulu, and Marko Lončar
Optica 2(11) 924-928 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  2. X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
    [Crossref]
  3. P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
    [Crossref]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  5. M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Extension of second-harmonic phase-matching range in lithium niobate guides,” Opt. Lett. 8(2), 116–118 (1983).
    [Crossref] [PubMed]
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
    [Crossref]
  7. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  8. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
    [Crossref]
  9. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  10. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13(11), 1050–1052 (1988).
    [Crossref] [PubMed]
  11. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [Crossref] [PubMed]
  12. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  13. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [Crossref]
  14. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [Crossref] [PubMed]
  15. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  16. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [Crossref] [PubMed]
  17. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
    [Crossref]
  18. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
    [Crossref]
  19. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  20. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  21. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  22. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
    [Crossref]
  23. T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20(27), 28119–28124 (2012).
    [Crossref] [PubMed]
  24. J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” arXiv preprint arXiv:1405.6473 (2014).
  25. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  26. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  27. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).
    [Crossref] [PubMed]
  28. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
    [Crossref]
  29. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
    [Crossref]
  30. M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  31. D. R. Turner, “Etch procedure for optical fibers,” (Google Patents, 1984).
  32. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [Crossref]
  33. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  34. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
    [Crossref] [PubMed]
  35. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
    [Crossref] [PubMed]
  36. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
    [Crossref] [PubMed]
  37. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  38. E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
    [Crossref]
  39. W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
    [Crossref] [PubMed]
  40. R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” arXiv preprint arXiv:1409.6351 (2014).
  41. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
    [Crossref] [PubMed]

2014 (4)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
[Crossref] [PubMed]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

2013 (2)

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

2012 (3)

2011 (2)

2010 (3)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

2007 (4)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
[Crossref] [PubMed]

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

2004 (3)

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

2003 (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

2002 (1)

2000 (2)

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1995 (1)

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

1992 (1)

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

1988 (1)

1983 (1)

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Almeida, V. R.

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Asobe, M.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

Bi, Z.-F.

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Botineau, J.

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
[Crossref] [PubMed]

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Brueck, S. R. J.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Cachard, A.

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Cassette, S.

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Chen, L.

Chiles, J.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Combrié, S.

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Coutaz, J. L.

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

De Micheli, M.

de Rossi, A.

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Diziain, S.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Duchesne, D.

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fathpour, S.

Fejer, M. M.

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Findakly, T. K.

Fong, K. Y.

Foster, M. A.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Fujimura, M.

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Gaeta, A. L.

Geiss, R.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gräupner, P.

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Hänsch, T. W.

Hashemi, H.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

He, J.-Y.

Hersee, S. D.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hong, F.-L.

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Kang, J.-H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Khan, S.

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Kley, E.-B.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
[Crossref] [PubMed]

Kurz, J. R.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Lee, C.-A.

Leonberger, F. J.

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Levy, J. S.

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Li, M.

Lipson, M.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Loncar, M.

Long, X. C.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Myers, R. A.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Neveu, S.

Nishida, Y.

Nishikawa, T.

Niu, H.

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Ostrowsky, D. B.

Ozawa, A.

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Palacios, T.

Papuchon, M.

Parameswaran, K. R.

Pernice, W.

Pernice, W. H. P.

Pertsch, T.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Pommier, J. C.

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

Rabiei, P.

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Ramer, R.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Reano, R. M.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Rodriguez, A.

Rodriguez, A. W.

Roussev, R. V.

Route, R. K.

Ryu, K. K.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Schrempel, F.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Schuck, C.

Sibillot, P.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Soljacic, M.

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
[Crossref] [PubMed]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Suchoski, P. G.

Tang, H. X.

Tran, N.-V.-Q.

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Tünnermann, A.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Turner, A. C.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Wang, K.-M.

Wang, T.-J.

Weidner, E.

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wood, M. G.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Xiong, C.

Xu, Q.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Zheng, K.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

ACS Photonics (1)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Appl. Phys. Lett. (8)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers,” Appl. Phys. Lett. 85(1), 4–6 (2004).
[Crossref]

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

E. Weidner, S. Combrié, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

J. Appl. Phys. (1)

P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides,” J. Appl. Phys. 71(9), 4136–4139 (1992).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Nat Commun (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat Commun 5, 3109 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (9)

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
[Crossref] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010).
[Crossref] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref] [PubMed]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).
[Crossref] [PubMed]

T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20(27), 28119–28124 (2012).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[Crossref]

Phys. Rev. Lett. (2)

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Other (5)

D. R. Turner, “Etch procedure for optical fibers,” (Google Patents, 1984).

R. W. Boyd, Nonlinear Optics (Academic, 2003).

J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” arXiv preprint arXiv:1405.6473 (2014).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” arXiv preprint arXiv:1409.6351 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabricated LN microdisk resonators. (a) Fabrication procedure: (i) a LNOI substrate with a 400 nm LN thin film on top of 1 µm silica sacrificial layer, obtained from NANOLN, was (ii) spin-coated with HSQ. EBL is performed to pattern the HSQ resist. (iii) Argon plasma etching was then used to transfer the etch mask pattern into LN, by removing ~300nm of LN. HF wet etching was used to remove HSQ residue, followed by (iv) an additional argon plasma etch to globally remove the remaining ~100nm of LN. After this step, the LN microdisk devices were defined with a final thickness of ~300 nm. Finally, the microdisks were undercut using HF wet etching to form suspended structures. (b) Representative SEM image of a suspended 28 µm diameter LN microdisk supported by a silica pedestal on top of a LN substrate. A magnified view of the microdisk edge reveals smooth sidewalls. All SEM images are taken at a 45° angle.

Fig. 2
Fig. 2

Resonance spectra and simulation results in telecom wavelengths. (a) A representative transmission spectrum collected from a 28 µm diameter disk revealing several sets of resonances, indicated by color coding. Each resonant dip is labeled as TEmn, where m, n are the azimuthal and radial mode numbers respectively. Inset shows the optical micrograph of tapered fiber coupling on top of the microdisk resonator. (b-d) High-resolution views of representative resonance dips for each radial mode and their corresponding Lorentzian fits (black curves), indicating quality factors of 1.02 × 105, 8.8 × 104 and 4.4 × 104 for 1st (c), 2nd (b) and 3rd (d) order radial modes respectively. (e-g) Finite element mode simulation of the three radial order modes shown in (b-d), indicating TE-like modes. Electric fields along radial direction (Er) are shown, labeled with mode numbers and effective indices. Dashed lines show the outlines of the device cross section.

Fig. 3
Fig. 3

Resonance spectra in visible wavelengths. (a) Transmission spectrum (770 – 780 nm). Inset: optical micrograph showing broad band red light (600 nm – 800 nm supercontinuum) coupling into the microdisk resonator. (b) Transmission spectrum ~637 nm obtained from a tunable diode laser. Inset: optical micrograph of red light coupling into the resonator. (c-d) High-resolution spectra of two representative resonance dips near 636.8 nm (c) and 637.1 nm (d), taken in laser wavelength fine tuning mode, and their Fano fits, indicating quality factors of 4.6 × 104 and 2.6 × 104.

Fig. 4
Fig. 4

Second harmonic generation. (a) Spectrometer data showing SHG peak at 773 nm when pumped at 1546 nm, indicating frequency doubling. Inset: black-and-white CCD camera image revealing scattered SHG light travelling around the LN microdisk perimeter. The fiber taper is positioned at the relatively dimmed area, indicated by the arrow. (b) Input-output power dependence and its quadratic fit. Inset shows the linear fit of double-log curve with a slope of 1.99 ± 0.02.

Fig. 5
Fig. 5

Optical bistability and its time-domain response. (a) Transmission spectra of a LN microdisk resonance at different in-coupled power levels, showing red-shift of resonant frequency and optical bistability at elevated input power. The baselines of each spectrum are normalized by input power. (b) Power hysteresis curves at different red-detuned laser wavelengths (legend indicates detuning). The arrows show the directions to which the laser power is swept. (c-e) Time-domain power responses showing both input optical signals (red) and output detector signals (blue) at different modulation frequencies: (c) 5 kHz, (d) 20 kHz and (e) 100 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(λ)= a 1 a 2 ( q+ 2(λ λ 0 ) γ ) 2 1+ ( 2(λ λ 0 ) γ ) 2

Metrics