Abstract

We present a novel method for distortion elimination in phase-modulated analog optical links. A small part of the phase modulated signal seeds a four-wave mixing comb source, which generates lightwaves with integer multiples of the phase modulation of the original signal. These lightwaves are scaled and re-combined with the original phase-modulated signal to cancel the distortion generated in the interferometric phase-to-amplitude conversion process. Experimentally, we demonstrate full cancelation of the third-order distortion of the receiver and achieve a 19-dB improvement in the link’s SFDR at a 1-Hz bandwidth. This approach is readily extendable to eliminate all relevant higher-order distortion products or synthesize arbitrary phase-to-amplitude transfer functions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic range improvement in analog photonic link by intermodulation-compensation receiver

Feifei Yin, Dan Tu, Xiaodong Liang, Yitang Dai, Junyi Zhang, Jianqiang Li, and Kun Xu
Opt. Express 23(9) 11242-11249 (2015)

Linear phase-and-frequency-modulated photonic links using optical discriminators

J. M. Wyrwas, R. Peach, S. Meredith, C. Middleton, M. S. Rasras, Kun-Yii Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, R. Keller, C. Bolle, L. Zhang, L. Buhl, M. C. Wu, Y.K. Chen, and R. DeSalvo
Opt. Express 20(24) 26292-26298 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “A tutorial on microwave photonics,” IEEE Photonics society newsletter.  26(2), 4–12 (2012).
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  5. W. S. Chang, ed., RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  6. C.H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University, 2006).
  7. A. Vilcot, B. Cabon, and J. Chazelas, eds., Microwave Photonics: from Components to Applications and Systems (Springer, 2003).
  8. C. Rumelhard, C. Algani, and A. Billabert, Microwaves Photonic Links: Components and Circuits (John Wiley & Sons, 2011).
  9. B. Wilson, Z. Ghassemlooy, and I. Darwazeh, eds., Analogue Optical Fibre Communications (ITE, 1995).
  10. R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
    [Crossref]
  11. R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightwave Technol. 21(12), 3180–3193 (2003).
    [Crossref]
  12. R. M. de Ridder and S. K. Korotky, “Feedforward compensation of integrated optic modulator distortion,” Technical Digest Conference Optical Fiber Communication, San Francisco, CA, 1990, paper WH5.
  13. S. R. O’Connor, T. R. Clark, and D. Novak, “Wideband adaptive feedforward photonic link,” J. Lightwave Technol. 26(15), 2810–2816 (2008).
    [Crossref]
  14. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
    [Crossref]
  15. D. Lam, A. M. Fard, B. Buckley, and B. Jalali, “Digital broadband linearization of optical links,” Opt. Lett. 38(4), 446–448 (2013).
    [Crossref] [PubMed]
  16. L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13(10), 928–930 (1988).
    [Crossref] [PubMed]
  17. S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
    [Crossref]
  18. G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
    [Crossref]
  19. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
    [Crossref]
  20. M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett. 37(11), 1823–1825 (2012).
    [Crossref]
  21. V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
    [Crossref]
  22. B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19(10), 729–731 (2007).
    [Crossref]
  23. T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
    [Crossref]
  24. T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett. 19(16), 1206–1208 (2007).
    [Crossref]
  25. J. D. McKinney, K. Colladay, and K. J. Williams, “Linearization of phase-modulated analog optical links employing interferometric demodulation,” J. Lightwave Technol. 27(9), 1212–1220 (2009).
    [Crossref]
  26. A. Bhatia, H. Ting, and M.A. Foster, “Third-order distortion elimination in phase-encoded analog-photonic links using a four-wave mixing comb source,” in CLEO: Science and Innovations (Optical Society of America, 2014), JTu4AJ.
    [Crossref]
  27. J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
    [Crossref]
  28. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
    [Crossref]
  29. E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (1)

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

2010 (1)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (4)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

2006 (1)

2003 (1)

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

1994 (1)

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

1990 (2)

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[Crossref]

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[Crossref]

1988 (1)

Alic, N.

Betts, G.

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

Borgis, A.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Bucholtz, F.

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

Buckley, B.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, H.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

Chen, M.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

Childs, R. B.

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[Crossref]

Clark, T. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

S. R. O’Connor, T. R. Clark, and D. Novak, “Wideband adaptive feedforward photonic link,” J. Lightwave Technol. 26(15), 2810–2816 (2008).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Colladay, K.

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[Crossref]

Dennis, M. L.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Devgan, P.

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

Fard, A. M.

Gruner-Nielsen, L.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Haas, B. M.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Inoue, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Jalali, B.

Johnson, L. M.

Kakande, J.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[Crossref]

Kuo, B. P.

Lam, D.

Li, P.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

McKinney, J.

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

McKinney, J. D.

Murphy, T. E.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

Myslivets, E.

Novak, D.

S. R. O’Connor, T. R. Clark, and D. Novak, “Wideband adaptive feedforward photonic link,” J. Lightwave Technol. 26(15), 2810–2816 (2008).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

O’Byrne, V. A.

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[Crossref]

O’Connor, S. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

S. R. O’Connor, T. R. Clark, and D. Novak, “Wideband adaptive feedforward photonic link,” J. Lightwave Technol. 26(15), 2810–2816 (2008).
[Crossref]

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Parmigiani, F.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Petropoulos, P.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Phelan, R.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Radic, S.

Richardson, D.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Roussell, H. V.

Sadhwani, R.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Seeds, A. J.

Shi, R.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

Slavik, R.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Syvridis, D.

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Urick, V.

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

Williams, K.

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

Williams, K. J.

Xie, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

Yang, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

Yao, J.

J. Yao, “A tutorial on microwave photonics,” IEEE Photonics society newsletter.  26(2), 4–12 (2012).

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990).
[Crossref]

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

IEEE Photonics society newsletter (1)

J. Yao, “A tutorial on microwave photonics,” IEEE Photonics society newsletter.  26(2), 4–12 (2012).

IEEE Trans. Microw. Theory Tech. (4)

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

V. Urick, F. Bucholtz, P. Devgan, J. McKinney, and K. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[Crossref]

T. R. Clark, S. R. O’Connor, and M. L. Dennis, “A phase-modulation I/Q-demodulation microwave-to-digital photonic link,” IEEE Trans. Microw. Theory Tech. 58(11), 3039–3058 (2010).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Kakande, R. Slavik, F. Parmigiani, A. Borgis, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (9)

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” 2012 IEEE International Topical Meeting on Microwave Photonics pp. 68–71 (2012).
[Crossref]

M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett. 37(11), 1823–1825 (2012).
[Crossref]

R. M. de Ridder and S. K. Korotky, “Feedforward compensation of integrated optic modulator distortion,” Technical Digest Conference Optical Fiber Communication, San Francisco, CA, 1990, paper WH5.

W. S. Chang, ed., RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

C.H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University, 2006).

A. Vilcot, B. Cabon, and J. Chazelas, eds., Microwave Photonics: from Components to Applications and Systems (Springer, 2003).

C. Rumelhard, C. Algani, and A. Billabert, Microwaves Photonic Links: Components and Circuits (John Wiley & Sons, 2011).

B. Wilson, Z. Ghassemlooy, and I. Darwazeh, eds., Analogue Optical Fibre Communications (ITE, 1995).

A. Bhatia, H. Ting, and M.A. Foster, “Third-order distortion elimination in phase-encoded analog-photonic links using a four-wave mixing comb source,” in CLEO: Science and Innovations (Optical Society of America, 2014), JTu4AJ.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A cascaded four-wave mixing process between the signal and a CW pump laser is employed to produce idlers with integer multiples of the phase modulation of the original signal at frequencies which are integer multiples of Δω = ω1–ω0 away from the two pumps.
Fig. 2
Fig. 2 By appropriately choosing, scaling, and combining lightwaves with the correct phase multiples of the original signals, any transfer function can be synthesized.
Fig. 3
Fig. 3 (a) The normalized transfer function with various Fourier terms (solid lines) and ideal (dotted); (b) 1st derivative of transfer function or normalized link gain; (c) 2nd derivative or second-order distortion; (d) 3rd derivative or third-order distortion.
Fig. 4
Fig. 4 Theoretical SFDR performance calculated for the ΦMID link as an increasing number of linearization terms are added and assuming a modulator Vπ of 5.9 V and 5-mA per photodetector with balanced detection.
Fig. 5
Fig. 5 The calculated SFDR as an increasing number of linearization terms are added. The dashed line represents the SFDR for a perfectly linear link when the maximum peak to peak voltage equals the modulator Vπ for reference.
Fig. 6
Fig. 6 The calculated SFDR versus signal bandwidth for different numbers of linearization terms.
Fig. 7
Fig. 7 Experimental block diagram of conventional phase-modulated analog optical link. ϕM: phase modulator, MZI: asymmetric Mach-Zehnder interferometer, PD: photodetector.
Fig. 8
Fig. 8 Experimental block diagram of the linearized link. EDFA: Erbium doped fiber amplifier, HNLF: highly nonlinear optical fiber, TDL: tunable delay line, −3φ filter: optical bandpass filter, VOA: variable optical attenuator, MZI: asymmetric Mach-Zehnder interferometer, PD: photodetector. Optical spectra at various points in the block diagram. A: Phase-modulated signal; B: Optical comb source output; C: Combined phase-modulated signal with −3φ component filtered from comb line.
Fig. 9
Fig. 9 SFDR two-tone test (fundamental tones: 5.35 and 5.45 GHz, spurious tone: 5.25 and 5.55 GHz) comparison between conventional (red) and linearized (blue) phase-modulated analog optical link.
Fig. 10
Fig. 10 Experimental SFDR versus signal bandwidth for the experimentally characterized conventional link and linearized link. The SFDR improvement is also plotted (dashed line).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

sin( ϕ( t ) )=ϕ( t ) ϕ ( t ) 3 3! +
sin( 3ϕ( t ) )=3ϕ( t ) ( 3ϕ( t ) ) 3 3! +
sin( ϕ( t ) ) sin( 3ϕ( t ) ) 27 = 8 9 ϕ( t )+O( ϕ ( t ) 5 )+,
sinϕ(t)=ϕ(t) ϕ (t) 3 3! +
a 1 sin3ϕ(t)= a 1 3ϕ(t) a 1 (3ϕ(t)) 3 3! +
------------------------------------ sinϕ(t)+ a 1 sin3ϕ(t)=( 1+3 a 1 )ϕ(t)
[ 3 3 ][ a 1 ]=[ 1 ]
[ a 1 ]=[ 1 27 ].
sinϕ(t)=ϕ(t) ϕ (t) 3 3! + ϕ (t) 5 5!
+ a 1 sin3ϕ(t)= a 1 3ϕ(t) a 1 ( 3ϕ(t) ) 3 3! + a 1 ( 3ϕ(t) ) 5 5!
+ a 2 sin5ϕ(t)= a 2 5ϕ(t) a 2 ( 5ϕ(t) ) 3 3! + a 2 ( 5ϕ(t) ) 5 5!
------------------------------------ sinϕ(t)+ a 1 sin3ϕ(t)+ a 2 sin5ϕ(t)=( 1+3 a 1 +5 a 2 )ϕ(t)
[ 3 3 5 3 3 5 5 5 ][   a 1 a 2 ]=[ 1 1 ]
[   a 1 a 2 ]=[ 1 18 1 250 ].
sinϕ(t)=ϕ(t) ϕ (t) 3 3! + ϕ (t) 5 5! ++ (1) m ϕ (t) 2m+1 (2m+1)! +
+ a 1 sin3ϕ( t )= a 1 3ϕ( t ) a 1 ( 3ϕ( t ) ) 3 3! + a 1 ( 3ϕ( t ) ) 5 5! ++ a 1 (1) m (3ϕ(t)) 2m+1 (2m+1)! +
+ a 2 sin5ϕ(t)= a 2 5ϕ(t) a 2 ( 5ϕ(t) ) 3 3! + a 2 ( 5ϕ(t) ) 5 5! ++ a 2 (1) m (5ϕ(t)) 2m+1 (2m+1)! +
+ a m sin( 2m+1 )ϕ( t ) = a m ( 2m+1 )ϕ( t ) a m ( ( 2m+1 )ϕ( t ) ) 3 3! + a m ( (2m+1)ϕ(t) ) 5 5! + + a m (1) m ((2m+1)ϕ(t)) 2m+1 (2m+1)! +
--------------------------------------------------------- sinϕ( t )+ a 1 sin3ϕ( t )+ a 2 sin5ϕ( t )++ a m sin( 2m+1 )ϕ( t )= ( 1+3 a 1 +5 a 2 +(2m+1) a m )ϕ(t)
[ 3 3 (2m+1) 3 3 2m1 (2m+1) 2m+1 ][ a 1 a m ]=[ 1 1 ]
[ a 1 a m ]= [ 3 3 (2m+1) 3 3 2m+1 (2m+1) 2m+1 ] 1 [ 1 1 ].

Metrics