Abstract

A flash-lamp pumped electro-optically Q-switched dual tunable wavelength Nd:Glass laser is demonstrated. An Nd:Glass rod was selected as the laser medium and a DKDP crystal was employed as the Q-switch. A cubic polarizer was placed in the cavity to divide the randomly polarized radiation into two orthogonally polarized beams. The two beams were tuned by two Littman-gratings and output independently. For Q-switched operation, the tuning range was 1050.1 – 1061.6 nm and 1050.5 – 1060.2 nm for the horizontal and vertical polarizations, respectively. When the horizontally polarized output was fixed at 1059.1 nm, the synchronized vertically polarized one can be tuned from 1051.5 to 1057.5 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber

Qi Song, Guoju Wang, Bingyuan Zhang, Wenjun Wang, Minghong Wang, Qingli Zhang, Guihua Sun, Yong Bo, and Qinjun Peng
Appl. Opt. 54(10) 2688-2692 (2015)

Four-wavelength laser based on intracavity BaWO4 Raman conversions of a dual-wavelength Q-switched Nd:YLF laser

Yang Liu, Zhaojun Liu, Zhenhua Cong, Yongfu Li, Jinbao Xia, Qingming Lu, Sasa Zhang, and Shaojie Men
Opt. Express 22(18) 21879-21888 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Abshire, “Pulsed multiwavelength laser ranging system for measuring atmospheric delay,” Appl. Opt. 19(20), 3436–3440 (1980).
    [Crossref] [PubMed]
  2. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10(1), 187–192 (1971).
    [Crossref] [PubMed]
  3. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30(27), 3930–3937 (1991).
    [Crossref] [PubMed]
  4. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003).
    [Crossref] [PubMed]
  5. C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
    [Crossref]
  6. L. Guo, R. J. Lan, H. Liu, H. H. Yu, H. J. Zhang, J. Y. Wang, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. G. Xu, and Z. P. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
    [Crossref] [PubMed]
  7. L. J. Chen, Z. P. Wang, S. D. Zhuang, H. H. Yu, Y. G. Zhao, L. Guo, and X. G. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
    [Crossref] [PubMed]
  8. Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [Crossref]
  9. A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
    [Crossref]
  10. K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
  11. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [Crossref] [PubMed]
  12. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, “1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAIO3 pulsed laser,” Appl. Opt. 32(30), 5952–5957 (1993).
    [Crossref] [PubMed]
  13. Y. F. Lü, J. Xia, J. Zhang, X. H. Fu, and H. L. Liu, “Orthogonally polarized dual-wavelength Nd:YAlO3 laser at 1341 and 1339 nm and sum-frequency mixing for an emission at 670 nm,” Appl. Opt. 53(23), 5141–5146 (2014).
    [PubMed]
  14. Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength,CW Nd:YVO4 laser,” Opt. Express 14(12), 5329–5334 (2006).
    [Crossref] [PubMed]
  15. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  16. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of Terahertz Generation from Passively Q-Switched Dual-Frequency Laser Pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  17. P. Zhao, S. R. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
    [Crossref] [PubMed]
  18. W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  19. W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
    [Crossref]
  20. Y. Jiang, Y. J. Ding, and L. B. Zotova, “Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates,” Appl. Phys. Lett. 96(3), 031101 (2010).
    [Crossref]

2014 (2)

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Y. F. Lü, J. Xia, J. Zhang, X. H. Fu, and H. L. Liu, “Orthogonally polarized dual-wavelength Nd:YAlO3 laser at 1341 and 1339 nm and sum-frequency mixing for an emission at 670 nm,” Appl. Opt. 53(23), 5141–5146 (2014).
[PubMed]

2011 (3)

2010 (3)

2009 (1)

2007 (1)

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

2006 (1)

2003 (1)

2002 (2)

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

2000 (1)

Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

1993 (1)

1991 (1)

1980 (1)

1973 (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

1971 (1)

Abshire, J. B.

Bethea, C. G.

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

Bienfang, J. C.

Bindra, K. S.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Bruneau, D.

Cazeneuve, H.

Chen, L. J.

Chen, S. Y.

Chen, T.

Chen, Y. F.

Chen, Y. H.

Chiang, A. C.

Denman, C. A.

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of Terahertz Generation from Passively Q-Switched Dual-Frequency Laser Pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. R. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

Y. Jiang, Y. J. Ding, and L. B. Zotova, “Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates,” Appl. Phys. Lett. 96(3), 031101 (2010).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

Fernelius, N.

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

Fu, X. H.

Grime, B. W.

Guo, L.

Gupta, P. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Hillman, P. D.

Hu, D. W.

Huang, C. H.

Huang, Y. C.

Huber, G.

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

Jiang, P. P.

Jiang, Y.

Y. Jiang, Y. J. Ding, and L. B. Zotova, “Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates,” Appl. Phys. Lett. 96(3), 031101 (2010).
[Crossref]

Kong, J.

Lan, R. J.

Lin, W. X.

Lin, Y. Y.

Liu, H.

Liu, H. L.

Loth, C.

Lü, Y. F.

Lunstedt, K.

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

Moore, G. T.

Mu, X. D.

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

Mukhopadhyay, P. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Oak, S. M.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Pavel, N.

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

Pelon, J.

Petermann, K.

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of Terahertz Generation from Passively Q-Switched Dual-Frequency Laser Pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

Ragam, S. R.

Sharma, S. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Shen, H. Y.

Shen, Y. H.

Shi, W.

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

Singh, A.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Telle, J. M.

Tu, R. Y.

Vodopyanov, K. L.

Wang, J. Y.

Wang, Z. P.

Weigl, F.

Wu, B.

Wu, R. F.

Xia, J.

Xu, X. G.

Yang, D. Z.

Ye, Q. J.

Yu, G. F.

Yu, H. H.

Zeng, R. R.

Zeng, Z. D.

Zhang, H. J.

Zhang, J.

Zhang, W. J.

Zhao, P.

Zhao, Y. G.

Zhou, Y. P.

Zhuang, S. D.

Zotova, I. B.

Zotova, L. B.

Y. Jiang, Y. J. Ding, and L. B. Zotova, “Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates,” Appl. Phys. Lett. 96(3), 031101 (2010).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (2)

Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

K. Lunstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).

Appl. Phys. Lett. (3)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7–28.7 mm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett. 80(21), 3889–3891 (2002).
[Crossref]

Y. Jiang, Y. J. Ding, and L. B. Zotova, “Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates,” Appl. Phys. Lett. 96(3), 031101 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of dual tunable wavelength Nd:Glass laser.
Fig. 2
Fig. 2 Fluorescence spectra of Nd:Glass and the tuning range of horizontally polarized laser.
Fig. 3
Fig. 3 Tuning characteristics of free-running mode. Triangles are the output pulse energy of vertically polarized laser at different wavelengths; disks are the corresponding pulse energy of horizontally polarized laser at 1061.0 nm.
Fig. 4
Fig. 4 Typical temporal profiles of dual-wavelength output pulses generated from Q-switched Nd:Glass laser. Ch1−horizontally polarized laser at 1059.1 nm; Ch2−vertically polarized laser at 1056.1 nm.
Fig. 5
Fig. 5 Tuning spectra of dual-wavelength operation.
Fig. 6
Fig. 6 Tuning characteristics of the Q-switched mode. Triangles−vertically polarized laser; circles−horizontally polarized laser at 1059.1 nm.
Fig. 7
Fig. 7 Tuning spectra of SFG radiations.

Metrics