Abstract

We design and fabricate efficient, narrow-band, transmission color filters whose operating principle resides in a narrow-band guided-mode resonance associated with a surface-plasmon resonance. The fundamental device consists of an aluminum grating over a 200-nm-thick aluminum oxide film on a glass substrate. Numerical simulations show a sharp resonance-derived spectral profile that is additionally shaped by a neighboring Rayleigh anomaly. Besides the Rayleigh effect, we show numerically that the narrow bandwidth is predominantly due to the low refractive-index contrast between the waveguide film and the substrate. Red, green, and blue filters are fabricated using ultraviolet holographic lithography followed by a lift-off process. The experimental spectral efficiency in transmission exceeds 80% with full-width-at-half-maximum linewidths near 20 nm. We provide color images of the zero-order transmitted spectra, and illustrate the pure colors associated with the modal resonance extracted as side-coupled output light.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient color filter array using resonant Si3N4 gratings

Mohammad Jalal Uddin and Robert Magnusson
Opt. Express 21(10) 12495-12506 (2013)

Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response

Vivek Raj Shrestha, Chul-Soon Park, and Sang-Shin Lee
Opt. Express 22(3) 3691-3704 (2014)

Guided-mode resonant polarization-controlled tunable color filters

Mohammad Jalal Uddin, Tanzina Khaleque, and Robert Magnusson
Opt. Express 22(10) 12307-12315 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Sabnis, “Color filter technology for liquid crystal display,” Displays 20(3), 119–129 (1999).
    [Crossref]
  2. Yan Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/Reflective Structural Color Filters: Theory and Applications,” J. Nano Mat. 212637 (2014).
  3. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [Crossref] [PubMed]
  4. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  5. G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
    [Crossref]
  6. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  7. R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
    [Crossref] [PubMed]
  8. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010).
    [Crossref] [PubMed]
  9. V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci Rep 4, 4921 (2014).
    [Crossref] [PubMed]
  10. K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
    [Crossref]
  11. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filter,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  12. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [Crossref] [PubMed]
  13. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  14. Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
    [Crossref]
  15. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [Crossref]
  16. C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
    [Crossref] [PubMed]
  17. C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, and E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
    [Crossref] [PubMed]
  18. V. R. Shrestha, C. S. Park, and S. S. Lee, “Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response,” Opt. Express 22(3), 3691–3704 (2014).
    [Crossref] [PubMed]
  19. www.comsol.com .
  20. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” E. D. Palik ed., in Handbook of Optical Constants of Solids (Academic Press 1998).
  21. M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
    [Crossref]

2014 (4)

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci Rep 4, 4921 (2014).
[Crossref] [PubMed]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

V. R. Shrestha, C. S. Park, and S. S. Lee, “Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response,” Opt. Express 22(3), 3691–3704 (2014).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (4)

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filter,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[Crossref] [PubMed]

2011 (2)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

2010 (2)

2007 (1)

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal display,” Displays 20(3), 119–129 (1999).
[Crossref]

Amin, M. S.

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Boutami, S.

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Chen, Q.

Choi, D. Y.

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci Rep 4, 4921 (2014).
[Crossref] [PubMed]

Cumming, D. R. S.

Danner, A. J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Girard-Desprolet, R.

Guo, L. J.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Huang, T. J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Khaleque, T.

Kim, E. S.

Kim, S. H.

Lee, H. S.

Lee, J. Y.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Lee, K. D.

Lee, K. T.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Lee, S. S.

V. R. Shrestha, C. S. Park, and S. S. Lee, “Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response,” Opt. Express 22(3), 3691–3704 (2014).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci Rep 4, 4921 (2014).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, and E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
[Crossref] [PubMed]

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[Crossref] [PubMed]

Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010).
[Crossref] [PubMed]

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
[Crossref] [PubMed]

Lhostis, S.

Liu, H.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Magnusson, R.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filter,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Park, C. H.

Park, C. S.

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal display,” Displays 20(3), 119–129 (1999).
[Crossref]

Seo, S.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Shrestha, V. R.

Si, G.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Teng, J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Teo, S.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Uddin, M. J.

Vitrant, G.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yoon, J. W.

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

Yoon, Y. T.

Zhang, M.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Zhao, Y.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Appl. Phys. Express (1)

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

Appl. Phys. Lett. (4)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwith fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal display,” Displays 20(3), 119–129 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filter,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Opt. Express (9)

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
[Crossref] [PubMed]

Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, and E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
[Crossref] [PubMed]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

V. R. Shrestha, C. S. Park, and S. S. Lee, “Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response,” Opt. Express 22(3), 3691–3704 (2014).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

Sci Rep (1)

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci Rep 4, 4921 (2014).
[Crossref] [PubMed]

Other (3)

www.comsol.com .

D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” E. D. Palik ed., in Handbook of Optical Constants of Solids (Academic Press 1998).

Yan Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/Reflective Structural Color Filters: Theory and Applications,” J. Nano Mat. 212637 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a color filter incorporating coexisting GMR and SPR effects. The parameters ns, nf, and nc denote refractive indices of glass substrate, Al2O3 film, and air cover, respectively. For geometrical parameters, Λ is the period, F is the fill factor and tg and tf are the thicknesses of Al gratings and Al2O3 film, respectively. I0 and It indicate the intensity of the incident and transmitted light waves, respectively. (b) Al2O3 refractive index data measured by ellipsometry.

Fig. 2
Fig. 2

Theoretical performance of our color filters. Al2O3-film-thickness-dependent transmittance spectra for (a) blue (Λ = 290 nm), (b) green (Λ = 350 nm), and (c) red (Λ = 430 nm) filters. Fixed parameters are tg = 40 nm and F = 0.67. Spectral profiles of the transmittance at fixed Al2O3 film thickness (tf = 200 nm) for (d) blue (Λ = 290 nm), (e) green (Λ = 350 nm), and (f) red (Λ = 430 nm) filters. Insets I and II in (d) show the magnetic field amplitude |(H)| for the peak wavelength (I) and transmission minimum (II), respectively. Note that the field amplitudes are self-normalized by their maximum values in both insets. The vertical dashed lines in (d)~(f) indicate the Rayleigh anomaly wavelengths.

Fig. 3
Fig. 3

Calculated spectral response of the blue filter considering three different refractive indices of the film (a) nf = 2.5, (b) nf = 2.0, and (c) nf = 1.7. Representative values of the FWHM are shown at (a) tf = 100 nm, (b) tf = 150 nm, and (c) tf = 190 nm. Fixed parameters are Λ = 290 nm, F = 0.67, tg = 40 nm, and ns = 1.518.

Fig. 4
Fig. 4

Fabrication process flow.

Fig. 5
Fig. 5

AFM images and profiles of the fabricated (a,b) blue, (c,d) green, and (e,f) red filters.

Fig. 6
Fig. 6

Measured transmission spectra (solid curves) of fabricated (a) blue, (b) green, and (c) red filters in comparison with the simulated spectra (dashed curves); (d)–(f) show the color of the zero-order transmission and (g)–(i) show the color of the guided resonant modes of the filters.

Tables (1)

Tables Icon

Table 1 Designed and measured parameters for the blue, green, and red filters

Metrics