Abstract

Topological insulators (TIs) show unusual optical responses resulting from a topological magnetoelectric (TME) effect. In this paper, we study theoretically the scattering of electromagnetic waves by circular TI cylinders. In certain configurations, the bulk scattering can be suppressed, leading to strong scattering in the backward direction in both Rayleigh and Mie scattering regimes due to the TME effect. At antiresonances, an interesting filed trapping phenomenon is found which is absent in conventional dielectric cylinders.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of long-distance Casimir-Polder interaction between an excited atom and a cavity made of metamaterials

Wei Fang, Gao-Xiang Li, Jingping Xu, and Yaping Yang
Opt. Express 27(26) 37753-37770 (2019)

Generalized Kerker effects in nanophotonics and meta-optics [Invited]

Wei Liu and Yuri S. Kivshar
Opt. Express 26(10) 13085-13105 (2018)

Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles

Lixin Ge, Liang Liu, Shiwei Dai, Jiwang Chai, Qianju Song, Hong Xiang, and Dezhuan Han
Opt. Express 25(10) 10853-10862 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
    [Crossref]
  2. M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  3. X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
    [Crossref]
  4. F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett. 58, 1799–1802 (1987).
    [Crossref] [PubMed]
  5. X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
    [Crossref] [PubMed]
  6. W. K. Tse and A. H. MacDonald, “Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
    [Crossref]
  7. W. K. Tse and A. H. MacDonald, “Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B 84, 205327 (2011).
    [Crossref]
  8. J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
    [Crossref]
  9. M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
    [Crossref]
  10. J. Inoue, “An optical test for identifying topological insulator thin films,” Opt. Express 21, 8564 (2013).
    [Crossref] [PubMed]
  11. X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
    [Crossref]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  13. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopoic Phenomena (Springer-Verlag, 2006).
  14. T. Ochiai, “Theory of light scattering in axion electrodynamics,” J. Phys. Soc. Japan 81, 094401 (2012),
    [Crossref]
  15. L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).
  16. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  17. B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
    [Crossref]
  18. L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
    [Crossref]
  19. M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
    [Crossref]
  20. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
    [Crossref]
  21. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
    [Crossref] [PubMed]
  22. B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
    [Crossref]
  23. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  24. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
    [Crossref] [PubMed]
  25. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  26. W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
    [Crossref]
  27. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
    [Crossref]
  28. W. D. Luo and X. L. Qi, “Massive Dirac surface states in topological insulator/magnetic insulator heterostructures,” Phys. Rev. B 87, 085431 (2013).
    [Crossref]
  29. A. G. Grushin and F. Juan, “Finite-frequency magnetoelectric response of three-dimensional topological insulators,” Phys. Rev. B 86, 075126 (2012).
    [Crossref]
  30. P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
    [Crossref] [PubMed]

2014 (2)

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

2013 (6)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

W. D. Luo and X. L. Qi, “Massive Dirac surface states in topological insulator/magnetic insulator heterostructures,” Phys. Rev. B 87, 085431 (2013).
[Crossref]

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
[Crossref]

J. Inoue, “An optical test for identifying topological insulator thin films,” Opt. Express 21, 8564 (2013).
[Crossref] [PubMed]

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

2012 (4)

T. Ochiai, “Theory of light scattering in axion electrodynamics,” J. Phys. Soc. Japan 81, 094401 (2012),
[Crossref]

A. G. Grushin and F. Juan, “Finite-frequency magnetoelectric response of three-dimensional topological insulators,” Phys. Rev. B 86, 075126 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

2011 (2)

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

W. K. Tse and A. H. MacDonald, “Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B 84, 205327 (2011).
[Crossref]

2010 (3)

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

W. K. Tse and A. H. MacDonald, “Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

2009 (4)

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

2008 (1)

X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
[Crossref]

2007 (1)

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

2006 (1)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

1987 (1)

F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett. 58, 1799–1802 (1987).
[Crossref] [PubMed]

1983 (1)

Akhtar, M.

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

Albella, P.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Assaf, B. A.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

Bonod, N.

Brongersma, M. L.

Chadha, A.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Chan, C. T.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Chang, M. C.

M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]

Chong, T. C.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Chuwongin, S.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Drew, H. D.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Fan, S. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Fiaz, M.A.

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

Froufe-Pérez, L. S.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

García-Cámara, B.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Ge, L. X.

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Giles, C. L.

Gómez-Medina, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

González, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Grushin, A. G.

A. G. Grushin and F. Juan, “Finite-frequency magnetoelectric response of three-dimensional topological insulators,” Phys. Rev. B 86, 075126 (2012).
[Crossref]

Han, D. Z.

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Heiman, D.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Hong, M. H.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Hou, B.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

Hughes, T. L.

X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
[Crossref]

Inoue, J.

Jarillo-Herrero, P.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Jian, X. L.

L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
[Crossref]

Juan, F.

A. G. Grushin and F. Juan, “Finite-frequency magnetoelectric response of three-dimensional topological insulators,” Phys. Rev. B 86, 075126 (2012).
[Crossref]

Kafesaki, M.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Katmis, F.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Kerker, M.

Koschny, T.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Law, K. T.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Li, R. D.

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

Li, S.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Lindell, I. V.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Liu, V.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Liu, X. H.

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lukyanchuk, B. S.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Luo, W. D.

W. D. Luo and X. L. Qi, “Massive Dirac surface states in topological insulator/magnetic insulator heterostructures,” Phys. Rev. B 87, 085431 (2013).
[Crossref]

Ma, Z. Q.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

MacDonald, A. H.

W. K. Tse and A. H. MacDonald, “Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B 84, 205327 (2011).
[Crossref]

W. K. Tse and A. H. MacDonald, “Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[Crossref]

Maciejko, J.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

Mehta, R. V.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Moodera, J. S.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Moreno, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Naqvi, Q. A.

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

Naz, N. A.

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

Nieto-Vesperinas, M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Ochiai, T.

T. Ochiai, “Theory of light scattering in axion electrodynamics,” J. Phys. Soc. Japan 81, 094401 (2012),
[Crossref]

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Patel, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Qi, X. L.

W. D. Luo and X. L. Qi, “Massive Dirac surface states in topological insulator/magnetic insulator heterostructures,” Phys. Rev. B 87, 085431 (2013).
[Crossref]

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
[Crossref]

Rolly, B.

Sáenz, J. J.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Schuller, J. A.

Seo, J. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Sheng, P.

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopoic Phenomena (Springer-Verlag, 2006).

Shi, L. P.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Shuai, Y. C.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Sihvola, A. H.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Song, R. X.

L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
[Crossref]

Soukoulis, C. M.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

Steinberg, H.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Stout, B.

Tretyakov, S. A.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Tribelsky, M. I.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Tse, W. K.

W. K. Tse and A. H. MacDonald, “Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B 84, 205327 (2011).
[Crossref]

W. K. Tse and A. H. MacDonald, “Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[Crossref]

Upadhyay, R. V.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Viitanen, A. J.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Wang, B. N.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

Wang, D.-S.

Wang, K. X.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Wang, Z. B.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Wei, P.

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

Wen, W. J.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Wilczek, F.

F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett. 58, 1799–1802 (1987).
[Crossref] [PubMed]

Xiao, X.

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

Yang, H. J.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Yang, M. F.

M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zang, J. D.

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

Zeng, L. W.

L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
[Crossref]

Zhan, T. R.

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

Zhang, S. C.

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
[Crossref]

Zhao, D. Y.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Zhou, J. F.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

Zhou, W. D.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Zhou, Y.

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

Zi, J.

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

Appl. Phys. A (1)

B. S. Lukyanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys. A 89, 259–264 (2007).
[Crossref]

J. Mod. Opt. (1)

M. Akhtar, N. A. Naz, M.A. Fiaz, and Q. A. Naqvi, “Scattering from topological insulator circular cylinder buried in a semi-infinite medium,” J. Mod. Opt. 61, 697–702 (2014).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Japan (1)

T. Ochiai, “Theory of light scattering in axion electrodynamics,” J. Phys. Soc. Japan 81, 094401 (2012),
[Crossref]

Mod. Phys. Lett. B (1)

L. W. Zeng, R. X. Song, and X. L. Jian, “Scattering of electromagnetic radiation by a time reversal perturbation topological insulator circular cylinder,” Mod. Phys. Lett. B 27, 1350098 (2013).
[Crossref]

Nat. Commun. (2)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171–1178 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (5)

X. Xiao, S. Li, K. T. Law, B. Hou, C. T. Chan, and W. J. Wen, “Thermal coherence properties of topological insulator slabs in time-reversal symmetry breaking fields,” Phys. Rev. B 87, 205424 (2013).
[Crossref]

W. K. Tse and A. H. MacDonald, “Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B 84, 205327 (2011).
[Crossref]

M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]

W. D. Luo and X. L. Qi, “Massive Dirac surface states in topological insulator/magnetic insulator heterostructures,” Phys. Rev. B 87, 085431 (2013).
[Crossref]

A. G. Grushin and F. Juan, “Finite-frequency magnetoelectric response of three-dimensional topological insulators,” Phys. Rev. B 86, 075126 (2012).
[Crossref]

Phys. Rev. B. (1)

X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B. 78, 195424 (2008).
[Crossref]

Phys. Rev. Lett. (5)

F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett. 58, 1799–1802 (1987).
[Crossref] [PubMed]

W. K. Tse and A. H. MacDonald, “Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[Crossref]

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[Crossref]

P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, “Exchange-coupling-induced symmetry breaking in topological insulators,” Phys. Rev. Lett. 110, 186807 (2013).
[Crossref] [PubMed]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quant. Electron. 38, 1–74 (2014).
[Crossref]

Rev. Mod. Phys. (2)

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[Crossref]

M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Science (1)

X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323, 1184–1187 (2009).
[Crossref] [PubMed]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopoic Phenomena (Springer-Verlag, 2006).

L. X. Ge, T. R. Zhan, D. Z. Han, X. H. Liu, and J. Zi, “Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering”, arXiv:1404.2384 (2014).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic view of a circular TI cylinder placed along the z axis. The incident EM wave with TE or TM polarization is propagating along y axis.
Fig. 2
Fig. 2 Scattering of TE incident waves by a hollow TI cylinder with ε = 30. The background is vacuum with εb = 1. The cross-sectional profile of the hollow cylinder is shown in the inset of (b). (a) |Qr| as a function of the thickness parameter d = d0/r0. Here, x = kbr0 is the size parameter. (b) Ratio of the scattered radiant intensities I between the backward and forward directions. In (a) and (b), the red, blue and black curves correspond to the hollow TI cylinder with the axion angle θ = π, 3π and 5π, respectively. (c)–(f) Field distributions |E|2 of the scattered waves for d = 0.001. In (c) and (e), the axion angle of the cylinder is 0, standing for a conventional dielectric hollow cylinder; whereas in (d) and (f) the axion angle is 5π, standing for a TI hollow cylinder. In (c) and (d), x = 0.05; and in (e) and (f), x = 1.
Fig. 3
Fig. 3 Scattering coefficients an and bn as functions of the size parameter x with n = 0, 1 for the TE incident wave. The dielectric constant of the TI cylinder is ε = 30 and its axion angle is π. The background medium is vacuum.
Fig. 4
Fig. 4 Field distributions at two antiresonances x = 0.439 (upper panels) and 0.336 (lower panels). (a) and (d) are for |Eφ|, (b) and (e) for |Bz|, (c) for |Bφ|, and (f) for |Dz|. The boundary of the TI cylinder is indicated by dashed lines.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

D = ε E α ¯ B ,
H = B / μ + α ¯ E ,
E sca = n = E n [ i a n M n ( 3 ) + b n N n ( 3 ) ] ,
E int = n = E n [ c n M n ( 1 ) + d n N n ( 1 ) ] ,
a n = e i A n D n + α ˜ f n A n B n + α ˜ 2 t n ,
b n = e i B n C n + α ˜ g n A n B n + α ˜ 2 t n ,
A n ( x ) = m J n ( m x ) H n ( 1 ) ( x ) J n ( m x ) H n ( 1 ) ( x ) , B n ( x ) = m J n ( m x ) H n ( 1 ) ( x ) J n ( m x ) H n ( 1 ) ( x ) , C n ( x ) = m J n ( m x ) J n ( x ) J n ( m x ) J n ( x ) , D n ( x ) = m J n ( m x ) J n ( x ) J n ( m x ) J n ( x ) .
c n = i J n ( x ) e i + i H n ( 1 ) ( x ) a n m J n ( m x ) ,
d n = J n ( x ) e i + H n ( 1 ) ( x ) b n m J n ( m x ) .
f n ( x ) = J n ( m x ) J n ( m x ) [ e i 2 i π x + α ˜ e i J n ( x ) H n ( 1 ) ( x ) ] , g n ( x ) = J n ( m x ) J n ( m x ) [ e i 2 i π x + α ˜ e i J n ( x ) H n ( 1 ) ( x ) ] , t n ( x ) = J n ( m x ) J n ( m x ) H n ( 1 ) ( x ) H n ( 1 ) ( x ) .
[ E s E s ] = e i 3 π / 4 2 π k ρ e i k ρ [ T 1 T 4 T 3 T 2 ] [ E i E i ] ,
T 1 = n = e i n ϕ b n , TM ,
T 2 = n = e i n ϕ a n , TE ,
T 3 = n = e i n ϕ a n , TM ,
T 4 = n = e i n ϕ b n , TE .
I = | E | 2 = 2 π k ρ | T 1 e i + T 4 e i | 2 ,
I = | E | 2 = 2 π k ρ | T 3 e i + T 2 e i | 2 ,
I , TE = 2 k ρ π x 4 | α ˜ 4 α ˜ cos ϕ 2 m 2 + 2 + α ˜ 2 | 2 ,
I , TE = 2 k ρ π x 4 | ( 2 m 2 2 + α ˜ 2 ) cos ϕ 2 ( 2 m 2 + 2 + α ˜ 2 ) | 2 .
I , TM = 2 k ρ π x 4 | m 2 1 + α ˜ 2 4 α ˜ 2 cos ϕ 2 ( 2 m 2 + 2 + α ˜ 2 ) | 2 ,
I , TM = 2 k ρ π x 4 | α ˜ 4 α ˜ cos ϕ 2 m 2 + 2 + α ˜ 2 | 2 .

Metrics