Abstract

We demonstrate a high-Q amorphous silicon carbide (a-SiC) microresonator with optical Q as high as 1.3 × 105. The high optical quality allows us to characterize the third-order nonlinear susceptibility of a-SiC. The Kerr nonlinearity is measured to be n2 = (5.9 ± 0.7) × 10−15 cm2/W in the telecom band around 1550 nm. The strong Kerr nonlinearity and high optical quality render a-SiC microresonators a promising platform for integrated nonlinear photonics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics

Zhichao Ye, Attila Fülöp, Óskar Bjarki Helgason, Peter A. Andrekson, and Victor Torres-Company
Opt. Lett. 44(13) 3326-3329 (2019)

Optical nonlinearities in high-confinement silicon carbide waveguides

Jaime Cardenas, Mengjie Yu, Yoshitomo Okawachi, Carl B. Poitras, Ryan K. W. Lau, Avik Dutt, Alexander L. Gaeta, and Michal Lipson
Opt. Lett. 40(17) 4138-4141 (2015)

High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator

Yi Zheng, Minhao Pu, Ailun Yi, Bingdong Chang, Tiangui You, Kai Huang, Ayman N. Kamel, Martin R. Henriksen, Asbjørn A. Jørgensen, Xin Ou, and Haiyan Ou
Opt. Express 27(9) 13053-13060 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics3rd Ed. (Academic Press, 2008).
  2. G. P. Agrawal, Nonlinear Fiber Optics4th Ed. (Academic Press, New York, 2007).
  3. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
    [Crossref] [PubMed]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
    [Crossref]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref] [PubMed]
  7. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Malaki, “Generation of near-infrared frequency combs from a MgF2 whispersing gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
    [Crossref] [PubMed]
  8. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
    [Crossref]
  9. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon. 5, 141–148 (2011).
  10. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
    [Crossref]
  11. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref] [PubMed]
  12. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
    [Crossref]
  13. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19, 11084–11089 (2011).
    [Crossref] [PubMed]
  14. S. Yamada, B.-S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
    [Crossref] [PubMed]
  15. X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
    [Crossref] [PubMed]
  16. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
    [Crossref] [PubMed]
  17. M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, and J. Vuckovic, “Photonic crystal cavities in cubic (3C) polytype silicon carbide films,” Opt. Express 21, 32623–32629 (2013).
    [Crossref]
  18. A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
    [Crossref]
  19. X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
    [Crossref]
  20. G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
    [Crossref]
  21. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
    [Crossref]
  22. A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).
  23. G. L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials,” J. Opt. Soc. Am. B 25, 60–66 (2008).
    [Crossref]
  24. J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
    [Crossref]
  25. A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
    [Crossref]
  26. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref] [PubMed]
  27. R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
    [Crossref]
  28. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
    [Crossref] [PubMed]
  29. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22, 459–465 (2005).
    [Crossref]

2014 (4)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

2013 (6)

2012 (1)

2011 (4)

2010 (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
[Crossref]

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

2008 (5)

2007 (1)

2005 (2)

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

1977 (1)

A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics4th Ed. (Academic Press, New York, 2007).

Aharonovich, I.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Alassaad, K.

Alic, N.

Asano, T.

Awschalom, D. D.

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Babinec, T. M.

Benisty, H.

Bermel, P.

Borshch, A. A.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics3rd Ed. (Academic Press, 2008).

Bracher, D.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Bravo-Abad, J.

Brewer, C.

Brodin, M. S.

A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).

Brodyn, M. S.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Buckley, S.

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

Calusine, G.

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Cardenas, J.

Carraro, C.

R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
[Crossref]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Chen, Q.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Combrié, S.

De Rossi, A.

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

DesAutels, G. L.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Ding, J.-L.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon. 5, 141–148 (2011).

Fainman, Y.

Feng, P. X. L.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref] [PubMed]

Feng, Z.-C.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Ferro, G.

Finet, M.

Fomin, A. E.

Fong, K. Y.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
[Crossref]

Gorodetsky, M. L.

Grudinin, I. S.

Guha, B.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Hu, E. L.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Ikeda, K.

Ilchenko, V. S.

Joannopoulos, J. D.

Johnson, S. G.

Juhl, S.

Jung, H.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
[Crossref]

Lee, J. C.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Lee, J. Y.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref] [PubMed]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
[Crossref]

Liang, W.

Lin, Q.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref] [PubMed]

Lipson, M.

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

Lu, W.-J.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Lu, X.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref] [PubMed]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon. 5, 141–148 (2011).

Lyakhovetskii, V. R.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Maboudian, R.

R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
[Crossref]

Magyar, A. P.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

Malaki, L.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Matsko, A. B.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Malaki, “Generation of near-infrared frequency combs from a MgF2 whispersing gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
[Crossref]

Noda, S.

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Phare, C. T.

Poitras, C. B.

Politi, A.

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Powers, P.

Provine, J.

Puzikov, V. M.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Qian, S.-X.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Radulaski, M.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon. 5, 141–148 (2011).

Ristich, S.

Rodriguez, A.

Rokhsari, H.

Roper, C. S.

R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
[Crossref]

Rudenko, V. I.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Rundquist, A.

Saperstein, R. E.

Savchenkov, A. A.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Malaki, “Generation of near-infrared frequency combs from a MgF2 whispersing gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Seidel, D.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Malaki, “Generation of near-infrared frequency combs from a MgF2 whispersing gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Semenov, V. A.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Senesky, D. G.

R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
[Crossref]

Shah, S. Y.

Soljacic, M.

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Song, B.-S.

Tanaka, Y.

Tang, H.

Tran, Q. V.

Upham, J.

Vahala, K. J.

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

Volkov, V. I.

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).

Vuckovic, J.

Walker, M.

Wang, Y.-C.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Whitaker, M.

Xiong, C.

Yamada, S.

Zhang, M.

Zhang, X.

Zhou, H.

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

Appl. Phys. Lett. (3)

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104, 051109 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Chin, Phys. Lett. (1)

J.-L. Ding, Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, “Nonlinear optical properties and ultrafast dynamics of undoped and doped bulk SiC,” Chin, Phys. Lett. 27, 124202 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

R. Maboudian, C. Carraro, D. G. Senesky, and C. S. Roper, “Advances in silicon carbide science and technology at the micro- and nanoscales,” J. Vac. Sci. Technol. A 31, 050805 (2013).
[Crossref]

JETP Lett. (1)

A. A. Borshch, M. S. Brodyn, V. I. Volkov, V. I. Rudenko, V. R. Lyakhovetskii, V. A. Semenov, and V. M. Puzikov, “Nonlinear refraction in nanocrystalline silicon carbide films,” JETP Lett. 88, 386–388 (2008).
[Crossref]

Nature Photon. (4)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7, 597–607 (2013).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon. 4, 535–544 (2010).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon. 5, 141–148 (2011).

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8, 369–374 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. B (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Phys. Rev. Lett. (1)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. A. Borshch, M. S. Brodin, and V. I. Volkov, “Self-focusing of ruby-laser radiation in single-crystal silicon caribde,” Sov. Phys. JETP 45, 490–492 (1977).

Other (2)

R. W. Boyd, Nonlinear Optics3rd Ed. (Academic Press, 2008).

G. P. Agrawal, Nonlinear Fiber Optics4th Ed. (Academic Press, New York, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scanning electron microscopic (SEM) image of a fabricated microdisk, with a thickness of 570 nm and a radius of 6 μm. (b) SEM image of the device sidewall.
Fig. 2
Fig. 2 (a) Cavity transmission of an a-SiC microresonator for the quasi-TM polarization. Cavity modes are labeled as (n,m) where n and m stand for the radial and azimuthal mode numbers, respectively. Green and blue curves denote the transmission spectra scanned by different tunable lasers. (b) Optical mode profiles simulated by the finite element method. (c) and (d) show the transmission spectra of the cavity modes located at 1498 nm and 1545 nm, respectively, with experimental data in blue and theoretical fitting in red.
Fig. 3
Fig. 3 Schematic of the experimental setup. The pump wave is modulated in amplitude by a lithium niobate modulator which is driven by a network analyzer. The high-speed detector 1 is used to detect the modulated probe signal which is recorded by the network analyzer. VOA: variable optical attenuator. MUX/DEMUX: optical multiplexer and de-multiplexer. The microscopic image shows an a-SiC microdisk with a delivery tapered fiber.
Fig. 4
Fig. 4 Modulation spectrum of the probe wave, |δPs(Ω)|/P0s, with experimental data shown in blue and theoretical fitting shown in red. The dashed and dotted curves show the individual contributions of the Kerr effect and thermal response, respectively. The gray curve shows the detector noise background. The inset shows the detailed thermal response.
Fig. 5
Fig. 5 Schematic of forward and backward propagating modes inside the cavity.

Tables (1)

Tables Icon

Table 1 Comparison of a-SiC with other materials used for frequency comb generation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ P s ( Ω ) P 0 s = [ 2 γ s g T η T Γ T i Ω ] δ U p ( Ω ) H s ( Δ s ) ,
d a pf d t = ( i Δ p Γ tp / 2 ) a pf + i β p a pb i g T δ T a pf + i γ p ( U pf + 2 U pb ) a pf + i Γ ep A p ,
d a pb d t = ( i Δ p Γ tp / 2 ) a pb + i β p a pf i g T δ T a pb + i γ p ( U pb + 2 U pf ) a pb ,
d a sf d t = ( i Δ s Γ ts / 2 ) a sf + i β s a sb i g T δ T a sf + 2 i γ s U p a sf + i Γ es A s ,
d a sb d t = ( i Δ s Γ ts / 2 ) a sb + i β s a sf i g T δ T a sb + 2 i γ s U p a sb ,
d δ T d t = Γ T δ T + η T U p ,
T j P j P 0 j = | 1 Γ ej 2 ( L jc 0 + L js 0 ) | 2 ,
δ U p ( Ω ) = Γ ep 2 A p δ A p * ( Ω ) ( L pc 0 L pc + L ps 0 L ps ) Γ ep 2 A p * δ A p ( Ω ) ( L pc 0 * L pc + + L ps 0 * L ps + ) ,
H s ( Δ s ) = Γ es ( i Ω Γ ts + Γ es 2 ) ( Δ sc | L sc 0 | 2 L sc + L s c + Δ ss | L ss 0 | 2 L ss + L ss ) + Γ es 2 2 Δ s ( L sc 0 * L ss 0 L ss + L sc + L sc 0 L ss 0 * L ss L sc + ) ,

Metrics