Abstract

We experimentally demonstrate three kinds of metal-insulator-metal based plasmonic absorbers consisting of arrays of gold nanodisks distributed in different lattices, including square, triangular and honeycomb lattices. It’s found that resonances originated from localized surface plasmon undergo little changes with respect to different lattice distributions of the nanodisks. The interparticle coupling results in a minor bandwidth broadening of the fundamental mode. Different from square- and triangular-lattice absorbers, honeycomb-lattice absorber possesses a unique red-shifting (with respect to incident angles) narrow-band high-order mode, which originates from coupling of incident light to propagating surface plasmon polariton (SPP) waves. Similar high-order mode can also be generated in square-lattice absorber by increasing the period so that a smaller reciprocal lattice vector can be introduced to excite the SPP mode. Furthermore, we show that two types of resonances can interact and create Fano-type resonances. The simulation results agree well with the experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Maier and H. Brckl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  2. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  3. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  4. X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  5. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  6. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  7. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  8. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref] [PubMed]
  9. Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  10. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
    [Crossref]
  11. M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
    [Crossref]
  12. M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
    [Crossref]
  13. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [Crossref] [PubMed]
  14. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  15. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at optical frequency: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
    [Crossref] [PubMed]
  16. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  18. J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
    [Crossref]
  19. T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
    [Crossref]
  20. T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
    [Crossref]

2014 (1)

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
[Crossref]

2013 (1)

2012 (2)

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

2011 (6)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

2010 (1)

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

2009 (2)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

T. Maier and H. Brckl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
[Crossref] [PubMed]

2008 (2)

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

2005 (1)

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

2000 (1)

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

1999 (1)

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Baumberg, J.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Brckl, H.

Chen, Y.

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at optical frequency: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

Chong, C.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cole, R.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

Dai, J.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at optical frequency: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Fan, K.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Feng, Q.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Halas, N.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

Hu, C.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Huang, C.

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

Jiang, Z.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Kelf, T.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Lazarides, A.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

Letsinger, R.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Luo, X.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Maier, S.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Maier, T.

Mason, J.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Mayer, T.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Mirkin, C.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

Mock, J.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Mucic, R.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Padilla, W.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Pilon, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Pu, M.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Qiu, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at optical frequency: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Sajuyigbe, S.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Schatz, G.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

Shrekenhamer, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Smith, S.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Starr, A.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Storhoff, J.

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

Strikwerda, A.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Sugawara, Y.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Tao, H.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Toor, F.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Wang, C.

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

Wang, M.

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wasserman, D.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Werner, D.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Yan, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at optical frequency: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

Yun, S.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zhang, X.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Zhao, Z.

Zheludev, N.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

ACS Nano (1)

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

J. Storhoff, A. Lazarides, R. Mucic, C. Mirkin, R. Letsinger, and G. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 122(19), 4640–4650 (2000).
[Crossref]

J. Appl. Phys. (1)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109, 074510 (2011).
[Crossref]

J. Clust. Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10(2), 295–317 (1999).
[Crossref]

J. Opt. (1)

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).
[Crossref]

Nano Lett. (2)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (4)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2005).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Plasmonics (1)

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[Crossref]

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometric diagram of one unit of the metamaterial absorber with gold nanodisks on top layer. (b) SEM images of the metamaterial absorber with square-, triangular- and honeycomb-lattice gold nanodisks. For all the three kinds of absorbers, they consist of the same sized nanodisks (with a diameter (ϕ) of 180 nm) and the distances between adjacent nanodisks are all the same as 310 nm.

Fig. 2
Fig. 2

Measured absorption spectra of the absorbers in different lattices and polarizations at the yz incident plane: TE mode for square (a), triangular (b) and honeycomb (c) lattice absorber. TM mode for square (d), triangular (e) and honeycomb (f) lattice absorber.

Fig. 3
Fig. 3

Simulated absorption spectra of the absorbers with the particle size of 180 nm in different lattices and polarizations at the yz incident plane: TE mode for square (a), triangular (b) and honeycomb (c) lattice absorber. TM mode for square (d), triangular (e) and honeycomb (f) lattice absorber.

Fig. 4
Fig. 4

Measured multi-angle absorption spectra of the honeycomb lattice absorbers for the case of H⊥Sxz with the same lattice constant and different particle sizes, with the radius of 80 nm (a) and 90 nm (b) respectively. Insets are the SEM images of the honeycomb lattice absorbers.

Fig. 5
Fig. 5

Simulated (a) and experimentally measured (b) absorption spectra of the TM mode for the square lattice absorbers with different periods at 60° incident angle with the same particle size of ϕ = 180 nm.

Metrics