Abstract

By numerically studying the collision between (1 + 1)-Dimensional high order bright spatial solitons in a Kerr nonlinear media we show that after the collision, the high order solitons split into a number of first order solitons that corresponds to its order. Two different collision scenarios are considered: collision between two independent high order solitons and a collision with a virtual soliton simulated by the reflection at an angle of a high order soliton at a linear interface. The results demonstrate that in both cases the high order solitons split showing minor differences.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide properties of the asymmetric collision between two bright spatial solitons in Kerr media

D. Ramírez Martínez, M. M. Méndez Otero, M. L. Arroyo Carrasco, and M. D. Iturbe Castillo
Opt. Express 20(24) 27411-27418 (2012)

Bright spatial solitons in non-Kerr media: stationary beams and dynamical evolution

Allan W. Snyder and Yuri S. Kivshar
J. Opt. Soc. Am. B 14(11) 3025-3031 (1997)

Bright spatial solitons in defocusing Kerr media supported by cascaded nonlinearities

Ole Bang, Yuri S. Kivshar, and Alexander V. Buryak
Opt. Lett. 22(22) 1680-1682 (1997)

References

  • View by:
  • |
  • |
  • |

  1. R. Driben and B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers,” Opt. Lett. 38(18), 3623–3626 (2013).
    [Crossref] [PubMed]
  2. R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
    [Crossref] [PubMed]
  3. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  4. S. Trillo and W. Torruelas, eds., Spatial Solitons (Springer-Verlag, 2001).
  5. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. 55(Suppl.), 284–306 (1974).
    [Crossref]
  6. V. I. Karpman and V. V. Solov’ev, “A perturbational approach to two-soliton systems,” Physica 3D, 487–502 (1981).
  7. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983).
    [Crossref] [PubMed]
  8. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12(5), 355–357 (1987).
    [Crossref] [PubMed]
  9. M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
    [Crossref] [PubMed]
  10. M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
    [Crossref]
  11. M. F. Shih and M. Segev, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21(19), 1538–1540 (1996).
    [Crossref] [PubMed]
  12. G. E. Torres-Cisneros, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Asymmetric optical Y junctions and switching of weak beams using bright spatial-soliton collisions,” Opt. Lett. 18(16), 1299–1301 (1993).
    [Crossref] [PubMed]
  13. W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22(6), 369–371 (1997).
    [Crossref] [PubMed]
  14. K. Steiglitz and D. Rand, “Photon trapping and transfer with solitons,” Phys. Rev. A 79(2), 021802 (2009).
    [Crossref]
  15. K. Steiglitz, “Soliton-guided phase shifter and beam splitter,” Phys. Rev. A 81(3), 033835 (2010).
    [Crossref]
  16. D. R. Martínez, M. M. Otero, M. L. Carrasco, and M. D. Castillo, “Waveguide properties of the asymmetric collision between two bright spatial solitons in Kerr media,” Opt. Express 20(24), 27411–27418 (2012).
    [Crossref] [PubMed]
  17. E. DelRe, S. Trillo, and A. J. Agranat, “Collisions and inhomogeneous forces between solitons of different dimensionality,” Opt. Lett. 25(8), 560–562 (2000).
    [Crossref] [PubMed]
  18. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  19. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  20. Y. Kodama and A. Hasewaga, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. QE-23, 510–524 (1987).
  21. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
    [Crossref] [PubMed]
  22. W. Liu, L. Pang, X. Lin, R. Gao, and X. Song, “Observation of soliton fission in microstructured fiber,” Appl. Opt. 51(34), 8095–8101 (2012).
    [Crossref] [PubMed]
  23. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N- soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
    [Crossref]
  24. V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
    [Crossref]
  25. H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
    [Crossref] [PubMed]
  26. V. V. Afanasjev and V. A. Vysloukh, “Interaction of initially overlapping solitons with different frequencies,” J. Opt. Soc. Am. B 11(12), 2385–2393 (1994).
    [Crossref]
  27. A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
    [Crossref] [PubMed]

2013 (3)

2012 (2)

2010 (1)

K. Steiglitz, “Soliton-guided phase shifter and beam splitter,” Phys. Rev. A 81(3), 033835 (2010).
[Crossref]

2009 (2)

K. Steiglitz and D. Rand, “Photon trapping and transfer with solitons,” Phys. Rev. A 79(2), 021802 (2009).
[Crossref]

H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2003 (1)

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

2002 (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

2000 (1)

1997 (1)

1996 (3)

M. F. Shih and M. Segev, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21(19), 1538–1540 (1996).
[Crossref] [PubMed]

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

1994 (1)

1993 (1)

1989 (1)

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
[Crossref] [PubMed]

1987 (2)

Y. Kodama and A. Hasewaga, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. QE-23, 510–524 (1987).

F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12(5), 355–357 (1987).
[Crossref] [PubMed]

1986 (1)

1983 (1)

1981 (1)

V. I. Karpman and V. V. Solov’ev, “A perturbational approach to two-soliton systems,” Physica 3D, 487–502 (1981).

1974 (1)

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. 55(Suppl.), 284–306 (1974).
[Crossref]

1972 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Aceves, A. B.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
[Crossref] [PubMed]

Afanasjev, V. V.

Agranat, A. J.

Aleshkevich, V. A.

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

Carrasco, M. L.

Castillo, M. D.

Chen, Z.

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

Chen, Z. G.

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

Christodoulides, D. N.

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Coskun, T. H.

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

DelRe, E.

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Efimov, A.

Gao, R.

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Hasewaga, A.

Y. Kodama and A. Hasewaga, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. QE-23, 510–524 (1987).

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Holmstrom, S. A.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Karpman, V. I.

V. I. Karpman and V. V. Solov’ev, “A perturbational approach to two-soliton systems,” Physica 3D, 487–502 (1981).

Kartashev, Ya. V.

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

Khaykovich, L.

H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
[Crossref] [PubMed]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Kodama, Y.

Y. Kodama and A. Hasewaga, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. QE-23, 510–524 (1987).

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Królikowski, W.

Lin, X.

Liu, W.

Malomed, B. A.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N- soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

R. Driben and B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers,” Opt. Lett. 38(18), 3623–3626 (2013).
[Crossref] [PubMed]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
[Crossref] [PubMed]

H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
[Crossref] [PubMed]

Martínez, D. R.

Mitchell, M.

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

Mitschke, F. M.

Mollenauer, L. F.

Moloney, J. V.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
[Crossref] [PubMed]

Newell, A. C.

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
[Crossref] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Otero, M. M.

Pang, L.

Rand, D.

K. Steiglitz and D. Rand, “Photon trapping and transfer with solitons,” Phys. Rev. A 79(2), 021802 (2009).
[Crossref]

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Sanchez-Mondragon, J. J.

Satsuma, J.

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. 55(Suppl.), 284–306 (1974).
[Crossref]

Segev, M.

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

M. F. Shih and M. Segev, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21(19), 1538–1540 (1996).
[Crossref] [PubMed]

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Shih, M.

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

Shih, M.-

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

Shih, M. F.

Sinilo, P. V.

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

Skryabin, D. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N- soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

Solov’ev, V. V.

V. I. Karpman and V. V. Solov’ev, “A perturbational approach to two-soliton systems,” Physica 3D, 487–502 (1981).

Song, X.

Steiglitz, K.

K. Steiglitz, “Soliton-guided phase shifter and beam splitter,” Phys. Rev. A 81(3), 033835 (2010).
[Crossref]

K. Steiglitz and D. Rand, “Photon trapping and transfer with solitons,” Phys. Rev. A 79(2), 021802 (2009).
[Crossref]

Torres-Cisneros, G. E.

Trillo, S.

Vysloukh, V. A.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Yajima, N.

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. 55(Suppl.), 284–306 (1974).
[Crossref]

Yanay, H.

H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
[Crossref] [PubMed]

Yulin, A. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N- soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
[Crossref] [PubMed]

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Zhukarev, A. S.

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M.- Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69(27), 4151–4153 (1996).
[Crossref]

Chaos (1)

H. Yanay, L. Khaykovich, and B. A. Malomed, “Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation,” Chaos 19(3), 033145 (2009).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

Y. Kodama and A. Hasewaga, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. QE-23, 510–524 (1987).

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (8)

Phys. Rev. A (4)

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N- soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
[Crossref]

K. Steiglitz and D. Rand, “Photon trapping and transfer with solitons,” Phys. Rev. A 79(2), 021802 (2009).
[Crossref]

K. Steiglitz, “Soliton-guided phase shifter and beam splitter,” Phys. Rev. A 81(3), 033835 (2010).
[Crossref]

A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39(4), 1809–1827 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

M. Mitchell, Z. G. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77(3), 490–493 (1996).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Physica (1)

V. I. Karpman and V. V. Solov’ev, “A perturbational approach to two-soliton systems,” Physica 3D, 487–502 (1981).

Prog. Theor. Phys. (1)

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. 55(Suppl.), 284–306 (1974).
[Crossref]

Quantum Electron. (1)

V. A. Aleshkevich, V. A. Vysloukh, A. S. Zhukarev, Ya. V. Kartashev, and P. V. Sinilo, “Stimulated decay of N-soliton pulses and optimal separation of one soliton components,” Quantum Electron. 33(5), 460–464 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sov. Phys. JETP (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Other (1)

S. Trillo and W. Torruelas, eds., Spatial Solitons (Springer-Verlag, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Propagation of high order solitons for a distance of Z = π/2. Order of the soliton of: (a) 4th, and (b) 5th.

Fig. 2
Fig. 2

Intensity profiles for different soliton orders and distances. Top row for a propagation distance of π/4 and soliton order of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th. Bottom row for a sixth order soliton and propagation distance of: (a) Z = π/24, (b) Z = π/18, (c) Z = π/12 and (d) Z = π/8.

Fig. 3
Fig. 3

Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision of high order solitons. The initial separation was 6 and the magnitude of the transversal velocity V = 1. Soliton order of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th.

Fig. 4
Fig. 4

Top view of the symmetric collision of two solitons of fifth order for the same conditions than Fig. 3.

Fig. 5
Fig. 5

Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision between a fundamental soliton and a high order soliton of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th.

Fig. 6
Fig. 6

Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision between a second order spatial soliton and a high order soliton of: (a) 3th, (b) 4th and (c) 5th.

Fig. 7
Fig. 7

Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision between a third order spatial soliton and a high order soliton of: (a) 4th and (b) 5th.

Fig. 8
Fig. 8

Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision between a fifth order and a forth order spatial soliton.

Fig. 9
Fig. 9

High order solitons incident to a linear interface. Interface set at X = 2. Soliton transversal velocity V = 0.3. Propagation distance of 24. Soliton order of (a) fundamental, (b) 2nd, (c) 3th and (d) 4 th.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i q Z = 1 4 2 q X 2 ± L D L NL | q | 2 q,
q(X,Z)=κsech(κX)exp( κ 2 Z/2),
q(X,Z=0)=Nsech(X),
q(X,Z=0)=Nsech(X X C )exp(iVX)+Nsech(X+ X C )exp(iVX),
q(X,Z=0)= N 1 sech(X X C )exp(iVX)+ N 2 sech(X+ X C )exp(iVX),
f(x)= 1 2 (1tanhκx),

Metrics