Abstract

Understanding the optical properties of nanometer-scale noble metals is important for the nanoplasmonic devices. The bulk gold and thin film are calculated by density functional theory (DFT) with LDA, PBE, and GLLBSC functionals, respectively. The GLLBSC results for bulk gold are closer to the experimental data because the GLLBSC functional has better descriptions of transition energy. The Im(ε) of thin film calculated by LDA and PBE are overestimated. The effects of DFT-based optical properties are performed by conducting electromagnetic simulations. The transmission for the gold thin film by GLLBSC is blue-shifted. The gold grating structure with the GLLBSC-based optical permittivity has strong localized streamlines of Poynting vector in the corner edges at the resonance condition.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

Loan Le Thi Ngoc, Justyna Wiedemair, Albert van den Berg, and Edwin T. Carlen
Opt. Express 23(5) 5547-5564 (2015)

Sensitized nonlinear emission of gold nanoparticles

M. A. Noginov, G. Zhu, and V. I. Gavrilenko
Opt. Express 15(24) 15648-15655 (2007)

Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study

Slimane Laref, Jiangrong Cao, Abu Asaduzzaman, Keith Runge, Pierre Deymier, Richard W. Ziolkowski, Mamoru Miyawaki, and Krishna Muralidharan
Opt. Express 21(10) 11827-11838 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  2. K. T. Lam and G. Liang, “An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges,” Appl. Phys. Lett. 92(22), 223106 (2008).
    [Crossref]
  3. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref] [PubMed]
  4. A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
    [Crossref]
  5. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
    [Crossref] [PubMed]
  6. S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
    [Crossref]
  7. G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
    [Crossref]
  8. K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
    [Crossref]
  9. J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
    [Crossref]
  10. J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
    [Crossref]
  11. P. Romaniello and P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
    [Crossref] [PubMed]
  12. A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
    [Crossref] [PubMed]
  13. R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
    [Crossref]
  14. M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
    [Crossref]
  15. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
    [Crossref]
  16. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
    [Crossref] [PubMed]
  17. J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
    [Crossref]
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  19. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
    [Crossref]
  20. K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
    [Crossref]
  21. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  22. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
    [Crossref]
  23. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

2014 (1)

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

2013 (4)

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
[Crossref]

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

2012 (1)

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
[Crossref]

2011 (2)

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
[Crossref]

2010 (3)

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

2009 (1)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

2008 (1)

K. T. Lam and G. Liang, “An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges,” Appl. Phys. Lett. 92(22), 223106 (2008).
[Crossref]

2005 (2)

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
[Crossref]

P. Romaniello and P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[Crossref] [PubMed]

2004 (2)

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

2002 (1)

R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
[Crossref]

2001 (1)

A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
[Crossref] [PubMed]

1997 (1)

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agnarsson, B.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Alvarez, M. M.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Ambrosch-Draxl, C.

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Asaduzzaman, A.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Campbell, S. D.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Cao, J.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Chen, J.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Chong, T. C.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

de Boeij, P. L.

P. Romaniello and P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[Crossref] [PubMed]

Del Sole, R.

R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
[Crossref]

A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
[Crossref] [PubMed]

Deymier, P.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Dulak, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Enkovaara, J.

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Ferrighi, L.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Gather, M. C.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Gavnholt, J.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Glantschnig, K.

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Glinsvad, C.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Haikola, V.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Häkkinen, H.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Hammer, B.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Hansen, H. A.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Hansen, L. B.

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
[Crossref]

Hong, M. H.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

Ingason, A. S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Jacobsen, K. W.

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
[Crossref]

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
[Crossref]

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaxiras, E.

G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
[Crossref]

Khoury, J. T.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Kossoy, A.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Kristoffersen, H. H.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Kuisma, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

Lam, K. T.

K. T. Lam and G. Liang, “An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges,” Appl. Phys. Lett. 92(22), 223106 (2008).
[Crossref]

Laref, S.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Larsen, A. H.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Lehtovaara, L.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Lenstra, D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[Crossref]

Leosson, K.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Liang, G.

K. T. Lam and G. Liang, “An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges,” Appl. Phys. Lett. 92(22), 223106 (2008).
[Crossref]

Lin, Y.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

Ljungberg, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Lopez-Acevedo, O.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

Madsen, G. K.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Malone, B. D.

G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
[Crossref]

Marini, A.

A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
[Crossref] [PubMed]

Marini, R.

R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
[Crossref]

Miyawaki, M.

Mortensen, J. J.

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
[Crossref]

Moses, P. G.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Muralidharan, K.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Nieminen, R. M.

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Nørskov, J. K.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Ojanen, J.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

Olafsson, S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Olsen, T.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Onida, G.

R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
[Crossref]

A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
[Crossref] [PubMed]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Petzold, V.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Puska, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Rantala, T. T.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

Romaniello, P.

P. Romaniello and P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[Crossref] [PubMed]

Romero, N. A.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Rossi, T. P.

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

Rostgaard, C.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Runge, K.

Sakko, A.

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

Schaaff, T. G.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Schiøtz, J.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Schouten, H. F.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[Crossref]

Shafigullin, M. N.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Stausholm-Møller, J.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Strange, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Thygesen, K. S.

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
[Crossref]

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
[Crossref]

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Tritsaris, G. A.

G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
[Crossref]

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Vanin, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Vezmar, I.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Visser, T. D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[Crossref]

Walter, M.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

Whetten, R. L.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

Yan, J.

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
[Crossref]

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
[Crossref]

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

Ziolkowski, R. W.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K. T. Lam and G. Liang, “An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges,” Appl. Phys. Lett. 92(22), 223106 (2008).
[Crossref]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Sakko, T. P. Rossi, J. Enkovaara, and R. M. Nieminen, “Atomistic approach for simulating plasmons in nanostructures,” Appl. Phys., A Mater. Sci. Process. 115(2), 427–431 (2014).
[Crossref]

J. Appl. Phys. (1)

G. A. Tritsaris, B. D. Malone, and E. Kaxiras, “Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study,” J. Appl. Phys. 113(23), 233507 (2013).
[Crossref]

J. Chem. Phys. (1)

P. Romaniello and P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[Crossref] [PubMed]

J. Opt. B Quantum Semiclassical Opt. (1)

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[Crossref]

J. Phys. Chem. B (1)

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997).
[Crossref]

J. Phys. Condens. Matter (1)

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys. Condens. Matter 22(25), 253202 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Nanophotonics (1)

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

New J. Phys. (1)

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (8)

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B 84(23), 235430 (2011).
[Crossref]

J. Yan, K. W. Jacobsen, and K. S. Thygesen, “Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study,” Phys. Rev. B 86(24), 241404 (2012).
[Crossref]

J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces,” Phys. Rev. B 83(24), 245122 (2011).
[Crossref]

R. Marini, R. Del Sole, and G. Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation,” Phys. Rev. B 66(11), 115101 (2002).
[Crossref]

M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with discontinuity for band gap materials,” Phys. Rev. B 82(11), 115106 (2010).
[Crossref]

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71(3), 035109 (2005).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flows around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 032427 (2004).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

A. Marini, G. Onida, and R. Del Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Phys. Rev. Lett. 88(1), 016403 (2001).
[Crossref] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The predicted dielectric constants for bulk gold using the LDA, PBE, and GLLBSC functionals. For comparison, the experimental data reported by Johnson and Christy (J&C) is also shown.
Fig. 2
Fig. 2 Left panel: the predicted electronic band structures of bulk gold along the Γ-X direction for LDA, PBE, and GLLBSC; right panel: the corresponding density of states. The red dotted line at 0 eV indicates the Fermi-level.
Fig. 3
Fig. 3 (a) The predicted imaginary parts of the dielectric constants of the bulk gold by LDA, PBE, and GLLBSC. Only the interband contributions are considered. For comparison, the interband contribution of bulk gold calculated by Alvarez et al. [15] is shown as the green line. (b) The calculated lowest energy transition of the bulk gold along the Γ-X (left panel) and W-L-Γ (right panel) directions by LDA, PBE, and GLLBSC, where the green dotted lines at 0 eV indicate the Fermi-level.
Fig. 4
Fig. 4 Real parts (bottom panel) and imaginary parts (top panel) of the permittivity of Au(111) thin film (dotted line) predicted by the adopted DFT method in comparison with the data from bulk gold (solid line) and Johnson and Christy experimental data (green dotted line).
Fig. 5
Fig. 5 Comparison of the predicted band structures of the Au(111) thin film by different functionals, where (a) shows LDA (gray) and GLLBSC (black) and (b) shows PBE (gray) and GLLBSC (black). The Fermi energy is set to be zero as shown in the red dashed lines. The red plus sign markers at the M points of the surface Brillouin zone indicate that top d-bands are −1.305 eV, −2.087 eV, and −0.930 eV for LDA, GLLBSC, and PBE, respectively.
Fig. 6
Fig. 6 Cross section view of (a) gold thin film and (b) gold grating, where the thickness of the thin film is h, the width of the gap is d, and the period is p.
Fig. 7
Fig. 7 Loss (dashed line), reflection (solid line), and transmittance (cross line) for the gold thin films based on the GLLBSC (blue), PBE (red), LDA (black), and J&C (green) permittivities.
Fig. 8
Fig. 8 Loss (dashed line), reflection (solid line), and transmittance (cross line) for the gold grating based on the GLLBSC (blue), PBE (red), LDA (black), and J&C (green) permittivities.
Fig. 9
Fig. 9 Electric filed magnitude distributions (in logarithmic scale) and streamlines of Poynting vector for the gold grating structures at the wavelengths of the maximal losses: 826.2 nm, 882.8nm, 968.5nm and 959.2 nm, respectively, for the (a) J&C; (b) GLLBSC; (c) LDA; (d) PBE optical permittivities. The white solid line is the boundary between the Au(111) thin film, silicon dioxide substrate and the vacuum.

Metrics