Abstract

We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 – 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A scalable and continuous-upgradable optical wireless and wired convergent access network

J. Y. Sung, K. T. Cheng, C. W. Chow, C. H. Yeh, and C.-L. Pan
Opt. Express 22(11) 12779-12784 (2014)

Extensive Comparisons of Optical Fast-OFDM and Conventional Optical OFDM for Local and Access Networks

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouën, and I. Tomkos
J. Opt. Commun. Netw. 4(10) 724-733 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Y. J. Wen, W. D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometric filter for carrier-reuse upstream transmission,” J. Lightwave Technol. 25(12), 3669–3677 (2007).
    [Crossref]
  2. G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw. 1(4), C35 (2009).
    [Crossref]
  3. L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
    [Crossref]
  4. H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
    [Crossref] [PubMed]
  5. P. C. Peng, H. Y. Wang, C. H. Chang, H. L. Hu, W. Y. Yang, and F. K. Wu, “DSBCS modulation scheme for hybrid wireless and cable television system,” Opt. Express 22(1), 1135–1142 (2014).
    [Crossref] [PubMed]
  6. S. Cherry, “Edholm's law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
    [Crossref]
  7. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  8. Y. C. Chi, Y. C. Li, and G. R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol. 31(1), 28–35 (2013).
    [Crossref]
  9. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [Crossref] [PubMed]
  10. W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol. 30(12), 2025–2034 (2012).
    [Crossref]
  11. K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
    [Crossref]
  12. M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
    [Crossref]
  13. A. Rahim, S. Schwarz, J. Bruns, C. G. Schäffer, and K. Petermann, “Terabit optical OFDM demultiplexer in silicon photonics,” Proc. OFC, 2013, Paper JTh2A.28.
    [Crossref]
  14. W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
    [Crossref]
  15. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  16. C. W. Chow, C. H. Yeh, and J. Y. Sung, “OFDM RF power-fading circumvention for long-reach WDM-PON,” Opt. Express 22(20), 24392–24397 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[Crossref]

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol. 30(12), 2025–2034 (2012).
[Crossref]

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2004 (1)

S. Cherry, “Edholm's law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

Arlunno, V.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Attygalle, M.

Beltrán, M.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Caballero, A.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Chang, C. H.

Chang, G. K.

Cheng, T. H.

Cheng, X.

Cheng, Z.

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

Cherry, S.

S. Cherry, “Edholm's law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

Chi, S.

Chi, Y. C.

Chien, H. C.

Chow, C. W.

Chowdhury, A.

Cvijetic, N.

Deng, L.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Dogadaev, A.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Ellinas, G.

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Guild, K.

M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
[Crossref]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Hu, H. L.

Huang, M. F.

Jia, Z.

Jiang, W.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Li, Y. C.

Lin, C. C.

Lin, G. R.

Lin, Y. Z.

Liu, D.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Llorente, R.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Lourdudoss, S.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Lu, C.

Lu, H. H.

Martin, R.

M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
[Crossref]

Monroy, I. T.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Morita, I.

Okamoto, K.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Olsson, F.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Pan, C. L.

Pang, X.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Parker, M. C.

M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
[Crossref]

Peng, H. C.

Peng, P. C.

Peng, W. R.

Shih, F. Y.

Soares, F. M.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Sung, J. Y.

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

C. W. Chow, C. H. Yeh, and J. Y. Sung, “OFDM RF power-fading circumvention for long-reach WDM-PON,” Opt. Express 22(20), 24392–24397 (2014).
[Crossref] [PubMed]

Takahashi, H.

Tsai, W. S.

Tsang, H. K.

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

Tsuritani, T.

Tzeng, S. J.

Walker, S. D.

M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
[Crossref]

Wang, C. H.

Wang, H. Y.

Wang, Y.

Wen, Y. J.

Wong, C. Y.

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

Wu, F. K.

Xu, K.

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

Xu, Z.

Yang, W. Y.

Yeh, C. H.

Yoo, S. J. B.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Yu, J.

Yu, X.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Zhang, X.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Zhao, Y.

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

Zhong, W. D.

IEEE Photon. Technol. Lett. (2)

L. Deng, M. Beltrán, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, “Fiber wireless transmission of 8.3-Gb/s/ch QPSK-OFDM signals in 75–110-GHz band,” IEEE Photon. Technol. Lett. 24(5), 383–385 (2012).
[Crossref]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

IEEE Spectr. (1)

S. Cherry, “Edholm's law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

K. Xu, J. Y. Sung, C. Y. Wong, Z. Cheng, C. W. Chow, and H. K. Tsang, “Optical Nyquist filters based on silicon coupled resonator optical waveguides,” Opt. Commun. 329, 23–27 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (3)

M. C. Parker, R. Martin, K. Guild, and S. D. Walker, “Hierarchical wireless and optical access networking: convergence and energy efficiency,” Proc. ICTON2011, Tu.D3.5.
[Crossref]

A. Rahim, S. Schwarz, J. Bruns, C. G. Schäffer, and K. Petermann, “Terabit optical OFDM demultiplexer in silicon photonics,” Proc. OFC, 2013, Paper JTh2A.28.
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” Proc. OFC2009, OWO2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Architecture of the proposed convergent access network. OTG: optical tone generator, MOD: optical modulator, SMF: single mode fiber, OF: optical filter, PD: photodiode, TL: tunable laser. Inset: schematic optical spectrum of the AO-OFDM-SC.
Fig. 2
Fig. 2 Schematic optical spectra and simulated eye-diagrams of the AO-OFDM-SC.
Fig. 3
Fig. 3 (a) Measured BER of the O-OFDM MMW signal with both wireless and SMF transmissions. (b) Measured SNR performance of the MMW signal with both wireless and 40 km SMF transmissions.
Fig. 4
Fig. 4 (a) Measured BER of the O-OFDM MMW signal with SMF transmissions and without wireless transmission. (b) Measured SNR performance of the MMW signal with 40 km SMF transmissions and without wireless transmission.
Fig. 5
Fig. 5 (a) Measured BER of the O-OFDM MMW signal with power fading mitigation, with SMF transmissions and without wireless transmission. (b) Measured SNR performance of the MMW signal with power fading mitigation, with 40 km SMF transmissions and without wireless transmission.
Fig. 6
Fig. 6 BER measurements of an AO-OFDM-SC sub-channel. Insets: experimental de-multiplexed eyes at B2B and 40 km SMF; experimental optical spectrum of 100 Gb/s and 40 Gb/s AO-OFDM signals.

Metrics