Abstract

A novel color-filter-free visible-light communication (VLC) system using red-green-blue (RGB) light emitting diode (LED) and mobile-phone camera is proposed and demonstrated for the first time. A feature matching method, which is based on the scale-invariant feature transform (SIFT) algorithm for the received grayscale image is used instead of the chromatic information decoding method. The proposed method is simple and saves the computation complexity. The signal processing is based on the grayscale image computation; hence neither color-filter nor chromatic channel information is required. A proof-of-concept experiment is performed and high performance channel recognition is achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
RGB visible light communication using mobile-phone camera and multi-input multi-output

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(9) 9383-9388 (2016)

Quadrichromatic LED based mobile phone camera visible light communication

H Chen, X Z Lai, P Chen, Y T Liu, M Y Yu, Z H Liu, and Z J Zhu
Opt. Express 26(13) 17132-17144 (2018)

Visible light communication using mobile-phone camera with data rate higher than frame rate

Chi-Wai Chow, Chung-Yen Chen, and Shih-Hao Chen
Opt. Express 23(20) 26080-26085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).
  2. H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
    [Crossref] [PubMed]
  3. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [Crossref] [PubMed]
  4. Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  5. Z. Wang, W. D. Zhong, C. Yu, J. Chen, C. P. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Opt. Express 20(17), 18861–18868 (2012).
    [Crossref] [PubMed]
  6. C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref] [PubMed]
  7. J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
    [Crossref] [PubMed]
  8. C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. IEEE Workshop on Opt. Wireless Comm. 2012 (OWC’12), 1244–1248.
    [Crossref]
  9. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
    [Crossref]
  10. S. Sugawa, N. Akahane, S. Adachi, K. Mori, T. Ishiuchi, and K. Mizobuchi, “A 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor,” Prof. ISSCC 2005, Papers 19.
  11. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [Crossref]
  12. P. Ge, P. Yin, H. Wang, and T. Chang, “Image matching technology in high power LED’s eutectic welding,” Opt. Express 22(11), 13531–13540 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

2012 (4)

2004 (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Chang, C. H.

Chang, T.

Chen, C. Y.

Chen, J.

Chen, M. C.

Chen, W.

Chow, C. W.

Francois, C. P.

Ge, P.

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Jhang, T. W.

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Liu, Y.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Liu, Y. L.

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Lu, H. H.

Sung, J. Y.

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Wang, H.

Wang, Z.

Wu, H. W.

Wu, P. Y.

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

Yeh, C. H.

Yin, P.

Yu, C.

Zhong, W. D.

IEEE Photon. J. (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photon. J. 5(5), 6801418 (2013).
[Crossref]

IEEE Photon. Soc. Newslett. (1)

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9–13 (2012).

Int. J. Comput. Vis. (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Opt. Express (7)

Other (2)

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. IEEE Workshop on Opt. Wireless Comm. 2012 (OWC’12), 1244–1248.
[Crossref]

S. Sugawa, N. Akahane, S. Adachi, K. Mori, T. Ishiuchi, and K. Mizobuchi, “A 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor,” Prof. ISSCC 2005, Papers 19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Functional block diagram of the proposed RGB-VLC system.
Fig. 2
Fig. 2 Schematic top-view of the LED light spots. (a) Only red, (b) green, or (c) blue color chip is turned on in LED package.
Fig. 3
Fig. 3 (a) Photograph of the Tx, showing the 3 x 3 RGB LED array and the control board. Feature matching of LED images: (b) red color channel on, (c) red color channel on, (d) red color channel on, and (e) green color channel on. Blue lines illustrate the matched image features.

Tables (3)

Tables Icon

Table 1 Average Number of Extracted Features of 3 Color Channels @ Transmission Distance 50cm/100cm

Tables Icon

Table 2 Average Number of Matched Feature of 3 Color Channels @ 50cm/100cm

Tables Icon

Table 3 Average Detection Rate of Three Different Color Channels @ 50cm/100cm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(x,y,σ)= 1 2π σ 2 e ( x 2 + y 2 )/2 σ 2
L(x,y,σ)=G(x,y,σ)*I(x,y)
D(x,y,σ)=L(x,y,kσ)L(x,y,σ)

Metrics