Abstract

Recently, a low frequency driving of a fringe-field switching-liquid crystal display (FFS-LCD) draws much attention to minimize the power consumption. In the low frequency driving of FFS-LCD, an image flickering effect occurs when the sign of the electric field is reversed. We suggested a method to eliminate the image flickering effect by doping small amount of bent-core liquid crystal (BLC) molecules. The BLC molecules have an opposite sign of flexoelectric polarization and reduce the flexoelectric polarization of the host liquid crystal. By adding 2.0 wt% of BLC, the total transmittance during a positive and a negative electric field could be balanced and the image flickering effect was not observed by eyes.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave

Seung-Won Oh, Jun-Hee Park, Ji-Hoon Lee, and Tae-Hoon Yoon
Opt. Express 23(18) 24013-24018 (2015)

Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell

Min Su Kim, Philip J. Bos, Dong-Woo Kim, Chang-Min Keum, Deng-Ke Yang, Hyeong Gyun Ham, Kwang-Un Jeong, Joong Hee Lee, and Seung Hee Lee
Opt. Express 24(26) 29568-29576 (2016)

Image flickering-free polymer stabilized fringe field switching liquid crystal display

Yingfei Jiang, Guangkui Qin, Xiaoguang Xu, Li Zhou, SeungHee Lee, and Deng-Ke Yang
Opt. Express 26(25) 32640-32651 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Collings and J. S. Patel, Handbook of Liquid Crystal Research (Oxford University Express, 1997), p. 415.
  2. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons Inc., 2010), p. 570.
  3. S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  4. Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
    [Crossref]
  5. K.-C. Chu, C.-W. Huang, R.-F. Lin, C.-H. Tsai, J.-N. Yeh, S.-Y. Su, C.-J. Ou, S.-C. F. Jiang, and W.-C. Tsai, “A method for analyzing the eye strain in fringe-field-switching LCD under low-frequency driving,” SID Int. Symp. Digest Tech. Pap. 45(1), 308–311 (2014).
    [Crossref]
  6. I. H. Jeong, I. W. Jang, D. H. Kim, J. S. Han, B. V. Kumar, and S. H. Lee, “Investigation on flexoelectric effect in the fringe field switching mode,” SID Int. Symp. Digest Tech. Pap. 44(1), 1368–1371 (2013).
    [Crossref]
  7. R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
    [Crossref]
  8. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Oxford Science Publications, 1995), p. 136.
  9. J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
    [Crossref] [PubMed]
  10. J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
    [Crossref] [PubMed]
  11. L. M. Blinov and V. Chgrinov, Electrooptic effects in liquid crystal materials (partially ordered systems), (Springer, 1993), p. 340.
  12. J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity,” J. Phys. (Paris) 38(3), 315–324 (1977).
    [Crossref]
  13. I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
    [Crossref]

2013 (2)

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
[Crossref] [PubMed]

2006 (1)

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

1998 (1)

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1983 (1)

I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
[Crossref]

1977 (1)

J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity,” J. Phys. (Paris) 38(3), 315–324 (1977).
[Crossref]

1969 (1)

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Chen, Y.

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

Choi, E.-J.

J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
[Crossref] [PubMed]

Dozov, I.

I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
[Crossref]

Durand, G.

I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
[Crossref]

Eber, N.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Fodor-Csorba, K.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Gleeson, J. T.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Harden, J.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Jákli, A.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Kim, H. Y.

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, J.-H.

J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Luo, Z.

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

Marcerou, J. P.

J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity,” J. Phys. (Paris) 38(3), 315–324 (1977).
[Crossref]

Martinot-Lagarde, Ph.

I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
[Crossref]

Mbanga, B.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Meyer, R. B.

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Peng, F.

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

Prost, J.

J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity,” J. Phys. (Paris) 38(3), 315–324 (1977).
[Crossref]

Sprunt, S.

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

Wu, S.-T.

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

Yoon, T.-H.

J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. H. Lee, S. L. Lee, S. H. Lee, and H. Y. Kim, “Electro-optical characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

J. Disp. Tech. (1)

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
[Crossref]

J. Phys. (Paris) (2)

J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity,” J. Phys. (Paris) 38(3), 315–324 (1977).
[Crossref]

I. Dozov, Ph. Martinot-Lagarde, and G. Durand, “Conformational flexoelectricity in nematic liquid crystals,” J. Phys. (Paris) 44(19), 817–822 (1983).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J.-H. Lee, T.-H. Yoon, and E.-J. Choi, “Unusual temperature dependence of the splay elastic constant of a rodlike nematic liquid crystal doped with a highly kinked bent-core molecule,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(6), 062511 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, “Giant flexoelectricity of bent-core nematic liquid crystals,” Phys. Rev. Lett. 97(15), 157802 (2006).
[Crossref] [PubMed]

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Other (6)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Oxford Science Publications, 1995), p. 136.

P. J. Collings and J. S. Patel, Handbook of Liquid Crystal Research (Oxford University Express, 1997), p. 415.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons Inc., 2010), p. 570.

K.-C. Chu, C.-W. Huang, R.-F. Lin, C.-H. Tsai, J.-N. Yeh, S.-Y. Su, C.-J. Ou, S.-C. F. Jiang, and W.-C. Tsai, “A method for analyzing the eye strain in fringe-field-switching LCD under low-frequency driving,” SID Int. Symp. Digest Tech. Pap. 45(1), 308–311 (2014).
[Crossref]

I. H. Jeong, I. W. Jang, D. H. Kim, J. S. Han, B. V. Kumar, and S. H. Lee, “Investigation on flexoelectric effect in the fringe field switching mode,” SID Int. Symp. Digest Tech. Pap. 44(1), 1368–1371 (2013).
[Crossref]

L. M. Blinov and V. Chgrinov, Electrooptic effects in liquid crystal materials (partially ordered systems), (Springer, 1993), p. 340.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical simulation of the TR profile of FFS-LCD and the LC director orientation during (a) positive and (b) negative electric field frame. es = 8 pC/m and eb = −8 pC/m were assumed and 2 Hz 2.2 V squire voltage was applied.
Fig. 2
Fig. 2 Schematic illustration of the splay deformation formation in the presence of (a) the positive and (b) the negative electric field frame.
Fig. 3
Fig. 3 (a) Chemical structure of the BLC molecules, B57 and B81. (b) Schematic illustration of the flexoelectric polarization compensation by doping BLC molecules.
Fig. 4
Fig. 4 TR of the pure LC, B57- and B81-mixed LC samples in the presence of the 2 Hz square voltage.
Fig. 5
Fig. 5 (a) POM image of the pure LC, (b) B57-, and (c) B81-mixed LC samples during the positive and negative electric field frame. (d)-(f) correspond to the TR profile of the corresponding samples along a single slice cut normal to the interdigitated electrodes.
Fig. 6
Fig. 6 Simulation results of the TR with (a) es = 10 pC/m, eb = −10 pC/m, (b) es = 5 pC/m, eb = −5 pC/m, (c) es = 2.5 pC/m, eb = −2.5 pC/m, (d) es = 0 pC/m, eb = 0 pC/m, (e) es = −2.5 pC/m, eb = 2.5 pC/m, (f) es = −5 pC/m, eb = 5 pC/m, and (g) es = −10 pC/m, eb = 10 pC/m. 2 Hz 2.2 V voltage was applied and the data was obtained after 200 ms after applying the voltage.

Metrics