Abstract

We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔνTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linewidth-tolerant and multi-format carrier phase estimation schemes for coherent optical m-QAM flexible transmission systems

Tao Yang, Chen Shi, Xue Chen, Min Zhang, Yuefeng Ji, Feng Hua, and Yufei Chen
Opt. Express 26(8) 10599-10615 (2018)

Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems

Yuliang Gao, Alan Pak Tao Lau, Shuangyi Yan, and Chao Lu
Opt. Express 19(22) 21717-21729 (2011)

Feedforward carrier recovery via pilot-aided transmission for single-carrier systems with arbitrary M-QAM constellations

Mohamed Morsy-Osman, Qunbi Zhuge, Lawrence R. Chen, and David V. Plant
Opt. Express 19(24) 24331-24343 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, “High spectral efficiency phase and quadrature amplitude modulation for optical fiber transmission - configurations, trends, and reach,” in Proceedings of ECOC 2009, paper 8.4.3 (2009).
  2. I. Garrett and G. Jacobsen, “Theory for optical heterodyne narrow-deviation FSK receivers with delay demodulation,” J. Lightwave Technol. 6(9), 1415–1423 (1988).
    [Crossref]
  3. G. Jacobsen, “Performance of DPSK and CPFSK systems with significant post-detection filtering,” J. Lightwave Technol. 11(10), 1622–1631 (1993).
    [Crossref]
  4. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  5. T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, and A. T. Friberg, “Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system,” Opt. Commun. 283(6), 963–967 (2010).
    [Crossref]
  6. F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
    [Crossref]
  7. T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
    [Crossref] [PubMed]
  8. T. Pfau, “Carrier Recovery Algorithms and Real-time DSP Implementation for Coherent Receivers,” in Proceedings of OFC 2014 (OSA, 2014), paper W4K.1.
    [Crossref]
  9. G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
    [Crossref] [PubMed]
  10. N. K. Jablon, “Joint blind equalization, carrier recovery and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process. 40(6), 1383–1398 (1992).
    [Crossref]
  11. P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [Crossref]
  12. I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]
  13. M. Seimetz, “Laser linewidth limitations for optical systems with high order modulation employing feed forward digital carrier phase estimation,” in Proceedings of OFC/NFOEC 2008 (OSA, 2008), paper OTuM2.
    [Crossref]
  14. I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
    [Crossref]
  15. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  16. X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers with M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
    [Crossref]
  17. J. Li, L. Li, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Laser-Linewidth-Tolerant Feed-Forward Carrier Phase Estimator with Reduced Complexity for QAM,” J. Lightwave Technol. 29(16), 2358–2364 (2011).
    [Crossref]
  18. K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge, “Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation Based on Modified QPSK Partitioning for Dual-Polarization 16-QAM Systems,” J. Lightwave Technol. 31(1), 50–57 (2013).
    [Crossref]
  19. C. Spatharakis, N. Argyris, S. Dris, and H. Avramopoulos, “Frequency offset estimation and carrier phase recovery for high-order QAM constellations using the Viterbi-Viterbi monomial estimator,” in Proceedings of IEEE Conference on Communication Systems, Networks & Digital Signal Processing (IEEE, 2014), pp. 781–786.
    [Crossref]
  20. M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
    [Crossref]
  21. F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
    [Crossref]
  22. D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]
  23. T. Pfau, L. Xiang, and S. Chandrasekhar, “Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels,” in Proceedings of ECOC2011, Tu.3.A.6.
    [Crossref]
  24. S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
    [Crossref]
  25. M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of IEEE Conference on Transparent Optical Networks (IEEE, 2005), pp. 225–229.
    [Crossref]
  26. VPItransmissionMaker Optical Systems 9.1, VPIphotonics GmbH, Berlin, Germany, www.vpiphotonics.com/ .
  27. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  28. MATLAB 8.3 (R2014a), The MathWorks Inc., Natick, Massachusetts, USA, www.mathworks.se/ .

2013 (1)

2012 (2)

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

2011 (3)

2010 (5)

P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[Crossref]

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, and A. T. Friberg, “Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system,” Opt. Commun. 283(6), 963–967 (2010).
[Crossref]

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers with M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

2009 (2)

2006 (1)

1993 (1)

G. Jacobsen, “Performance of DPSK and CPFSK systems with significant post-detection filtering,” J. Lightwave Technol. 11(10), 1622–1631 (1993).
[Crossref]

1992 (1)

N. K. Jablon, “Joint blind equalization, carrier recovery and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process. 40(6), 1383–1398 (1992).
[Crossref]

1988 (1)

I. Garrett and G. Jacobsen, “Theory for optical heterodyne narrow-deviation FSK receivers with delay demodulation,” J. Lightwave Technol. 6(9), 1415–1423 (1988).
[Crossref]

1984 (1)

F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
[Crossref]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Barletta, L.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Bertolini, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Buhl, L. L.

Cartledge, J. C.

Chandrasekhar, S.

T. Pfau, L. Xiang, and S. Chandrasekhar, “Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels,” in Proceedings of ECOC2011, Tu.3.A.6.
[Crossref]

Doerr, C. R.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

Friberg, A. T.

Gao, Y.

Garrett, I.

I. Garrett and G. Jacobsen, “Theory for optical heterodyne narrow-deviation FSK receivers with delay demodulation,” J. Lightwave Technol. 6(9), 1415–1423 (1988).
[Crossref]

Gavioli, G.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Gnauck, A. H.

Herath, V. R.

S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
[Crossref]

Hoffmann, S.

Hong, X.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Hoshida, T.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

Jablon, N. K.

N. K. Jablon, “Joint blind equalization, carrier recovery and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process. 40(6), 1383–1398 (1992).
[Crossref]

Jacobsen, G.

G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
[Crossref] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
[Crossref] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, and A. T. Friberg, “Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system,” Opt. Commun. 283(6), 963–967 (2010).
[Crossref]

G. Jacobsen, “Performance of DPSK and CPFSK systems with significant post-detection filtering,” J. Lightwave Technol. 11(10), 1622–1631 (1993).
[Crossref]

I. Garrett and G. Jacobsen, “Theory for optical heterodyne narrow-deviation FSK receivers with delay demodulation,” J. Lightwave Technol. 6(9), 1415–1423 (1988).
[Crossref]

F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
[Crossref]

Katoh, K.

Ke, J. H.

Kikuchi, K.

Li, J.

Li, L.

Li, W.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Li, Y.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Lin, J.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Ly-Gagnon, D.

Magarini, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[Crossref]

Mogensen, F.

F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
[Crossref]

Noé, R.

Olesen, H.

F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
[Crossref]

Pepe, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Pfau, T.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

T. Pfau, L. Xiang, and S. Chandrasekhar, “Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels,” in Proceedings of ECOC2011, Tu.3.A.6.
[Crossref]

Popov, S.

Rasmussen, J. C.

Saranraj, M.

S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
[Crossref]

Sathyaram, S.

S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
[Crossref]

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

Seimetz, M.

M. Seimetz, “High spectral efficiency phase and quadrature amplitude modulation for optical fiber transmission - configurations, trends, and reach,” in Proceedings of ECOC 2009, paper 8.4.3 (2009).

M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of IEEE Conference on Transparent Optical Networks (IEEE, 2005), pp. 225–229.
[Crossref]

Spalvieri, A.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Tao, Z.

Tharranetharan, S.

S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
[Crossref]

Tsukamoto, S.

Vacondio, F.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wang, K.

T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, and A. T. Friberg, “Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system,” Opt. Commun. 283(6), 963–967 (2010).
[Crossref]

Winzer, P.

Wu, J.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Xiang, L.

T. Pfau, L. Xiang, and S. Chandrasekhar, “Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels,” in Proceedings of ECOC2011, Tu.3.A.6.
[Crossref]

Xu, T.

Zhang, F.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

Zhang, Y.

Zhong, K. P.

Zhou, X.

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers with M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 24(9), 739–741 (2012).
[Crossref]

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved Pilot-Aided Optical Carrier Phase Recovery for Coherent M –QAM,” IEEE Photon. Technol. Lett. 24(18), 1577–1580 (2012).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers with M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

IEEE Trans. Signal Process. (1)

N. K. Jablon, “Joint blind equalization, carrier recovery and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process. 40(6), 1383–1398 (1992).
[Crossref]

J. Lightwave Technol. (8)

I. Garrett and G. Jacobsen, “Theory for optical heterodyne narrow-deviation FSK receivers with delay demodulation,” J. Lightwave Technol. 6(9), 1415–1423 (1988).
[Crossref]

G. Jacobsen, “Performance of DPSK and CPFSK systems with significant post-detection filtering,” J. Lightwave Technol. 11(10), 1622–1631 (1993).
[Crossref]

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[Crossref]

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[Crossref]

J. Li, L. Li, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Laser-Linewidth-Tolerant Feed-Forward Carrier Phase Estimator with Reduced Complexity for QAM,” J. Lightwave Technol. 29(16), 2358–2364 (2011).
[Crossref]

K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge, “Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation Based on Modified QPSK Partitioning for Dual-Polarization 16-QAM Systems,” J. Lightwave Technol. 31(1), 50–57 (2013).
[Crossref]

Opt. Commun. (1)

T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, and A. T. Friberg, “Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system,” Opt. Commun. 283(6), 963–967 (2010).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

F. Mogensen, G. Jacobsen, and H. Olesen, “Light intensity pulsations in an injection locked semiconductor laser,” Opt. Quantum Electron. 16(2), 183–186 (1984).
[Crossref]

Other (9)

T. Pfau, “Carrier Recovery Algorithms and Real-time DSP Implementation for Coherent Receivers,” in Proceedings of OFC 2014 (OSA, 2014), paper W4K.1.
[Crossref]

M. Seimetz, “Laser linewidth limitations for optical systems with high order modulation employing feed forward digital carrier phase estimation,” in Proceedings of OFC/NFOEC 2008 (OSA, 2008), paper OTuM2.
[Crossref]

MATLAB 8.3 (R2014a), The MathWorks Inc., Natick, Massachusetts, USA, www.mathworks.se/ .

C. Spatharakis, N. Argyris, S. Dris, and H. Avramopoulos, “Frequency offset estimation and carrier phase recovery for high-order QAM constellations using the Viterbi-Viterbi monomial estimator,” in Proceedings of IEEE Conference on Communication Systems, Networks & Digital Signal Processing (IEEE, 2014), pp. 781–786.
[Crossref]

T. Pfau, L. Xiang, and S. Chandrasekhar, “Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels,” in Proceedings of ECOC2011, Tu.3.A.6.
[Crossref]

S. Tharranetharan, M. Saranraj, S. Sathyaram, and V. R. Herath, “A performance comparison of nonlinear phase noise tolerant constellation diagrams,” in Proceedings of IEEE Conference on Industrial and Information Systems (IEEE, 2011), pp. 439–442.
[Crossref]

M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of IEEE Conference on Transparent Optical Networks (IEEE, 2005), pp. 225–229.
[Crossref]

VPItransmissionMaker Optical Systems 9.1, VPIphotonics GmbH, Berlin, Germany, www.vpiphotonics.com/ .

M. Seimetz, “High spectral efficiency phase and quadrature amplitude modulation for optical fiber transmission - configurations, trends, and reach,” in Proceedings of ECOC 2009, paper 8.4.3 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) C-16QAM constellation and (b) comparison of C-16QAM and 16QAM without CPE.
Fig. 2
Fig. 2 Maximum linewidth tolerance at different OSNR and block size.
Fig. 3
Fig. 3 SER performance of C-16QAM with V-V CPE for different linewidth values.
Fig. 4
Fig. 4 (a) Linewidth tolerance and associated penalties for C-16QAM with V-V CPE, (b) Constellation before and after carrier recovery (ΔνTs = 1.8x10−4, OSNR = 18.7 dB).
Fig. 5
Fig. 5 (a) Linewidth tolerance and associated penalties for C-64QAM with V-V CPE, (b) Constellation before and after carrier recovery (ΔνTs = 3.6x10-4, OSNR = 26.7 dB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ ^ k = 1 M angle{ n=N +N ( x kn | x kn | ) M }

Metrics