Abstract

We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm·(mg/ml)−1 in the very low concentration range of 0.0~3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement

Ting-Qian Lin, Yin-Lin Lu, and Cheng-Chih Hsu
Opt. Express 18(26) 27560-27566 (2010)

Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs

Yinquan Yuan, Xi Yang, Dejing Gong, Fang Liu, Wenbin Hu, Weiquan Cai, Jun Huang, and Minghong Yang
Opt. Express 25(4) 3884-3898 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  2. D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
    [Crossref]
  3. S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
    [Crossref]
  4. S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
    [Crossref] [PubMed]
  5. J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
    [Crossref]
  6. J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
    [Crossref]
  7. Y. F. Qi, X. Q. Gao, and W. H. Bi, “Refractive index biosensor based on microstructured optical fiber long-period gratings: a theoretical analysis,” J. Opt. Soc. Am. B 30(5), 1256–1260 (2013).
    [Crossref]
  8. Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
    [Crossref] [PubMed]
  9. H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
    [Crossref]
  10. W. H. Long, W. W. Zou, X. W. Li, and J. P. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012).
    [Crossref] [PubMed]
  11. G. H. Wang, P. P. Shum, H. P. Ho, X. Yu, D. J. J. Hu, Y. P. Cui, L. M. Tong, and C. L. Lin, “Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (µFBG),” Opt. Express 19(9), 8930–8938 (2011).
    [Crossref] [PubMed]
  12. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
    [Crossref] [PubMed]
  13. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
    [Crossref] [PubMed]
  14. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y.-G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
    [Crossref] [PubMed]
  15. S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
    [Crossref] [PubMed]
  16. C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
    [Crossref]
  17. T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).
  18. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44(26), 5368–5373 (2005).
    [Crossref] [PubMed]
  19. A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
    [Crossref] [PubMed]
  20. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
    [Crossref] [PubMed]
  21. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2013 (3)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

Y. F. Qi, X. Q. Gao, and W. H. Bi, “Refractive index biosensor based on microstructured optical fiber long-period gratings: a theoretical analysis,” J. Opt. Soc. Am. B 30(5), 1256–1260 (2013).
[Crossref]

2012 (5)

W. H. Long, W. W. Zou, X. W. Li, and J. P. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012).
[Crossref] [PubMed]

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

2011 (4)

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

G. H. Wang, P. P. Shum, H. P. Ho, X. Yu, D. J. J. Hu, Y. P. Cui, L. M. Tong, and C. L. Lin, “Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (µFBG),” Opt. Express 19(9), 8930–8938 (2011).
[Crossref] [PubMed]

2010 (3)

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

2009 (2)

2007 (1)

2006 (1)

2005 (1)

2002 (1)

Barnes, J. A.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Bennion, I.

Bharadwaj, L. M.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Bi, W. H.

Bobby, M. C.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Bock, W. J.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Brown, R. S.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Chen, J. P.

Chen, X.

Cheung, A. H.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Chinnappan, R.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Cooper, K. L.

Cui, Y. P.

Davies, E.

Davis, F.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Deep, A.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Dreher, M. A.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Du, H.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Eggen, C. L.

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

Gao, X. Q.

Han, Y.-G.

He, Z.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Higson, S. P. J.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Hine, A.

Ho, H. P.

Hosseini, S. M.

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

Hu, D. J. J.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

G. H. Wang, P. P. Shum, H. P. Ho, X. Yu, D. J. J. Hu, Y. P. Cui, L. M. Tong, and C. L. Lin, “Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (µFBG),” Opt. Express 19(9), 8930–8938 (2011).
[Crossref] [PubMed]

Hughes, M.

Jain, S. C.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

James, S. W.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Jang, H. S.

Jorge, P.

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

Kanka, J.

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

Kao, L. T.-H.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Kapur, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Kim, D. W.

Kim, J. P.

Kumar, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Kwon, O. J.

Latifi, H.

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

Lavlinskaia, N.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Lee, K. S.

Li, X. W.

Libish, T. M.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Lim, J. L.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Lin, C. L.

Lin, Y. S.

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

Linesh, J.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Long, W. H.

Loock, H.-P.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Mackey, G.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

Mathew, S.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Mikulic, P.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Mishra, V.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Ng, A.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Nithyaja, B.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Pacey, G. E.

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

Park, K. N.

Park, M. K.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Pradeep, C.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Puckett, S. D.

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

Qi, Y. F.

Radhakrishnan, P.

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Shu, X. W.

Shum, P. P.

Sim, S. J.

Singh, N.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Sugden, K.

Tatam, R. P.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Tian, F.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Tian, Y.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Tiwari, U.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Tolba, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Tong, L. M.

Tong, W.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Topliss, S. M.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Wang, A.

Wang, G. H.

Wang, W. H.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wang, X. W.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Wang, Y.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Wei, H.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

Wei, T.

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wu, N.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Xiao, H.

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

Yu, X.

Zhang, L.

Zhang, Y.

Zhou, K.

Zhu, Y.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Ziba, M. I.

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

Zou, W. W.

Zou, X. T.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Zourob, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (3)

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Photonic Sensors (1)

H. Latifi, M. I. Ziba, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2(4), 340–356 (2012).
[Crossref]

Sens. Actuators B Chem. (4)

C. L. Eggen, Y. S. Lin, T. Wei, and H. Xiao, “Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry,” Sens. Actuators B Chem. 150(2), 734–741 (2010).
[Crossref]

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Actuators B Chem. 148(1), 221–226 (2010).
[Crossref]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Sensors (Basel) (1)

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, and X. W. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(4), 3780–3790 (2011).
[Crossref] [PubMed]

Sensors and Transducers Journal (1)

T. M. Libish, J. Linesh, M. C. Bobby, B. Nithyaja, S. Mathew, C. Pradeep, and P. Radhakrishnan, “Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber,” Sensors and Transducers Journal 129(6), 142–148 (2011).

Talanta (1)

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Micrograph of the fiber core and (b) mode coupling of the 81°-TFG.
Fig. 2
Fig. 2 (a) 81°-TFG spectrum in 1250~1700nm with un-polarized probe light and (b) its zoomed spectra for one pair of dual-peaks with X- and Y-polarized and un-polarized light.
Fig. 3
Fig. 3 Measured (a) RI and (b) temperature sensitivity of the 81°-TFG.
Fig. 4
Fig. 4 Modified process for the fiber surface of the 81°-TFG.
Fig. 5
Fig. 5 Micro image of the (a) Cleaned fiber (b) Silane fiber (c) GOD-immobilized fiber (d) fluorescence fiber.
Fig. 6
Fig. 6 (a) Spectra and resonant wavelengths of the 81°-TFG after cleaning, silanization and GOD-immobilization process, (b) Experimental setup for investigating the correlation between D-Glucose concentration and grating spectral response.
Fig. 7
Fig. 7 (a) Spectrum evolution of 81°-TFG with the glucose concentration, (b) Shift of the resonant wavelength of 81°-TFG by the selective method and non-selective method in the concentration range of 0~3.0mg/ml.

Tables (1)

Tables Icon

Table 1 Comparison of the Sensing Parameters between LPG based and 81°-TFG based Glucose Sensor

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ c x,y =( n co x,y n cl m )Λ.
D-Glucose+ H 2 O+ O 2 GOD D-Gluconic acid + H 2 O 2 .

Metrics