Abstract

We report on unidirectional and asymmetric transmission of radially polarized THz radiation through a dual circular metallic grating with sub-wavelength slits. Unidirectional transmission is shown theoretically for a super-Gaussian incident beam, and an asymmetric transmission is demonstrated experimentally, when the radially polarized beam of 0.1 THz is obtained by converting a linearly polarized beam with a discontinuous phase retarder and a tapered waveguide. The dual grating does not include nonlinear materials, its operation is reciprocal, and analogous to that of some planar metallic gratings.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric transmission of terahertz radiation through a double grating

Marcin Stolarek, Dmitriy Yavorskiy, Rafał Kotyński, Carlos J. Zapata Rodríguez, Jerzy Łusakowski, and Tomasz Szoplik
Opt. Lett. 38(6) 839-841 (2013)

Linear to radial polarization conversion in the THz domain using a passive system

T. Grosjean, F. Baida, R. Adam, J-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau
Opt. Express 16(23) 18895-18909 (2008)

Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band

Deng Fei Tang, Chuan Wang, Wei Kang Pan, Min Hua Li, and Jian Feng Dong
Opt. Express 25(10) 11329-11339 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15, 014602 (2014).
    [Crossref]
  2. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
    [Crossref]
  3. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).
  4. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
    [Crossref]
  5. A. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17, 278–292 (2009).
    [Crossref] [PubMed]
  6. V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons,” Phys. Rev. A 86, 043805 (2012).
    [Crossref]
  7. T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
    [Crossref] [PubMed]
  8. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
    [Crossref]
  9. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
    [Crossref] [PubMed]
  10. W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18, 7590–7595 (2010).
    [Crossref] [PubMed]
  11. M. Stolarek, D. Yavorskiy, R. Kotynski, C. Z. Rodriguez, J. Lusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38, 839–841 (2013).
    [Crossref] [PubMed]
  12. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
    [Crossref]
  13. C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
    [Crossref]
  14. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
    [Crossref] [PubMed]
  15. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  16. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [Crossref] [PubMed]
  17. S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref] [PubMed]
  18. Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21, 10642 (2013).
    [Crossref] [PubMed]
  19. T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express 16, 18895–18909 (2008).
    [Crossref]
  20. F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [Crossref]
  21. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
    [Crossref]
  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  23. F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [Crossref] [PubMed]
  24. A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
    [Crossref] [PubMed]

2014 (2)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15, 014602 (2014).
[Crossref]

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons,” Phys. Rev. A 86, 043805 (2012).
[Crossref]

2011 (2)

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
[Crossref] [PubMed]

2010 (2)

W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18, 7590–7595 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (3)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

A. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17, 278–292 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

2006 (3)

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

2004 (3)

2003 (1)

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

Adam, R.

Andrews, S.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Baida, F.

Baida, F. I.

F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Belkhir, A.

F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Billot, L.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Charraut, D.

Chen, J.

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
[Crossref] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Cheng, C.

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
[Crossref] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Choudhury, A.

Chusseau, L.

Degiron, A.

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

Ebbesen, T.

A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[Crossref] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Fan, Y.-X.

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
[Crossref] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

García-Vidal, F.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Grosjean, T.

Guillet, J.-P.

Guo, C.-C.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kanda, N.

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Kang, M.

Kim, D. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Konishi, K.

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Kotynski, R.

Kuwata-Gonokami, M.

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons,” Phys. Rev. A 86, 043805 (2012).
[Crossref]

Labeke, D. V.

F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Lezec, H. J.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

Lusakowski, J.

Maier, S.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Maradudin, A. A.

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons,” Phys. Rev. A 86, 043805 (2012).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Martín-Moreno, L.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Mizumoto, T.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15, 014602 (2014).
[Crossref]

Nouvel, P.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ozbay, E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

A. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17, 278–292 (2009).
[Crossref] [PubMed]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Penarier, A.

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Ren, F.-F.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Rodriguez, C. Z.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Serebryannikov, A.

Serebryannikov, A. E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Sheppard, C. J. R.

Shoji, Y.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15, 014602 (2014).
[Crossref]

Stolarek, M.

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Szoplik, T.

Tian, H.-

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Torres, J.

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Wang, H.-T.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

White, K. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

Wu, Q.-Y.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Xu, J.

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y.-X. Fan, and H.-T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36, 1905–1907 (2011).
[Crossref] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

Xu, T.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

Yavorskiy, D.

Ye, W.-M.

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

Yuan, X.-D.

Zen, C.

Zhan, Q.

Zheng, Z.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.- Tian, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91, 111111 (2007).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Appl. Phys. (2)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
[Crossref]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” J. Appl. Phys. 79, 314–316 (2001).

Nat. Commun. (1)

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Nature Photon. (2)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nature Photon. 7, 579–582 (2013).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the depth limit,” Nature Photon. 3, 152–156 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

V. Kuzmiak and A. A. Maradudin, “Asymmetric transmission of surface plasmon polaritons,” Phys. Rev. A 86, 043805 (2012).
[Crossref]

Phys. Rev. B (1)

F. I. Baida, A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[Crossref]

Phys. Rev. E (1)

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E 74, 056611 (2006).
[Crossref]

Phys. Rev. Lett. (2)

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15, 014602 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Radial cross-section of the electric field components Er, Ez and time-averaged Poynting vector <Sz> of the TM0,1 mode of a cylindrical metallic waveguide (a) with a radius a = 0.45λ, and (b) with a radius a = 5λ.
Fig. 2
Fig. 2 (a) Schematic of the filter supporting asymmetric transmission of radially polarized light. The top part of the figure shows a radial (r-z) cross-section of the filter (dashed line denotes the optical axis). The bottom part includes the schematics of the metallic slices which form the filter after stacking together. Tiny metallic bridges connect circular regions. (b) Experimental set-up: S – Gunn diode operating at 0.1 THz, C – chopper, PM – parabolic mirror, ITO – ITO mirror, DPE– Teflon discontinuous delay plate, TW- tapered waveguide, F-asymmetric filter, GC – detector (Golay cell) mounted on a xyz stage.
Fig. 3
Fig. 3 Demonstration of the unidirectional transmission and focusing – radial (r-z) cross-section through the energy density calculated with BOR-FDTD shows the transmission of a super-Gaussian radially polarized beam through the double grating. Optical axis is at the bottom of each figure. Insets show the magnified area of the grating. Field is incident onto the filter (a) from the side of the grating with the period Λ1 (transmission is allowed), and (b) from the side of the grating with the period Λ2 (transmission is blocked).
Fig. 4
Fig. 4 Energy density in the radial cross-section of the set-up calculated with BOR-FDTD. The radially polarized TM0,1 mode of a metallic waveguide is used as the source. The optical axis is at the bottom of each figure. Field is incident onto the filter (a) from the side of the grating with the period Λ1 (transmission is partly blocked), and (b) from the side of the grating with the period Λ2 (transmission is allowed). The contrast C is equal to 72%.
Fig. 5
Fig. 5 Cross-section with the field at the distance of (a) 80 mm, and (b) 110 mm from the filter obtained when the beam is transmitted (left) or blocked (right). The top figures show the energy density calculated with BOR-FDTD. The bottom figures demonstrate the field measured experimentally. Units on the axis are given in mm.

Metrics