Abstract

We present a new approach to the dual-beam geometry for on-chip optical trapping and Raman spectroscopy, using waveguides microfabricated in TripleX technology. Such waveguides are box shaped and consist of SiO2 and Si3N4, so as to provide a low index contrast with respect to the SiO2 claddings and low loss, while retaining the advantages of Si3N4. The waveguides enable both the trapping and Raman functionality with the same dual beams. Polystyrene beads of 1 µm diameter can be easily trapped with the device. In the axial direction discrete trapping positions occur, owing to the intensity pattern of the interfering beams. Trapping events are interpreted on the basis of simulated optical fields and calculated optical forces. The average transverse trap stiffness is 0.8 pN/nm/W, indicating that a strong trap is formed by the beams emitted by the waveguides. Finally, we measure Raman spectra of trapped beads for short integration times (down to 0.25 s), which is very promising for Raman spectroscopy of microbiological cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Serial Raman spectroscopy of particles trapped on a waveguide

Pål Løvhaugen, Balpreet Singh Ahluwalia, Thomas R. Huser, and Olav Gaute Hellesø
Opt. Express 21(3) 2964-2970 (2013)

Mass-manufacturable polymer microfluidic device for dual fiber optical trapping

Diane De Coster, Heidi Ottevaere, Michael Vervaeke, Jürgen Van Erps, Manly Callewaert, Pieter Wuytens, Stephen H. Simpson, Simon Hanna, Wim De Malsche, and Hugo Thienpont
Opt. Express 23(24) 30991-31009 (2015)

On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides

Pieter C. Wuytens, Andre G. Skirtach, and Roel Baets
Opt. Express 25(11) 12926-12934 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
    [Crossref]
  2. J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
    [Crossref]
  3. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]
  4. C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
    [Crossref] [PubMed]
  5. J. W. Chan, “Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells,” J Biophotonics 6(1), 36–48 (2013).
    [Crossref] [PubMed]
  6. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref] [PubMed]
  7. T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
    [Crossref] [PubMed]
  8. H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
    [Crossref]
  9. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
    [Crossref] [PubMed]
  10. T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).
  11. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  12. I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys. 1(1), 23–30 (2005).
    [Crossref]
  13. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
    [Crossref] [PubMed]
  14. S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
    [Crossref] [PubMed]
  15. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
    [Crossref] [PubMed]
  16. P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
    [Crossref] [PubMed]
  17. TriPleXTMis a trademark for LioniX’s waveguide technology.
  18. A. Leinse, R. Heideman, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPleX photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in Proceedings of the 16th European Conference on Integrated Optics, ECIO 2012, 1–2 (2012).
  19. R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
    [Crossref]
  20. Lumerical FDTD Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ (accessed Nov. 14, 2014).
  21. B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
    [Crossref]
  22. K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
    [Crossref]

2013 (7)

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

J. W. Chan, “Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells,” J Biophotonics 6(1), 36–48 (2013).
[Crossref] [PubMed]

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref] [PubMed]

2012 (2)

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

2011 (2)

T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

2010 (1)

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

2008 (1)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

2007 (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

2006 (1)

2005 (2)

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys. 1(1), 23–30 (2005).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

1978 (1)

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
[Crossref]

Ahluwalia, B. S.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Albert, J.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Becker, M.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Beleites, C.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Bernal Arango, F.

T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).

Bloch, I.

I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys. 1(1), 23–30 (2005).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Blokker-Koopmans, C. H. W.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Bocklitz, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Caro, J.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).

Chan, J. W.

J. W. Chan, “Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells,” J Biophotonics 6(1), 36–48 (2013).
[Crossref] [PubMed]

Chao, R. S.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
[Crossref]

Dholakia, K.

Dinno, M. A.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Dochow, S.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Fenn, M. B.

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

Garcés-Chávez, V.

Gemperline, P. J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Georgeiv, P. G.

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

Heideman, R.

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Hellesø, O. G.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Henkel, T.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Herrington, C. S.

Hoekman, M.

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Huser, T. R.

Jasse, B.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
[Crossref]

Jess, P. R. T.

Kobelke, J.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Koenig, J. L.

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
[Crossref]

Krafft, C.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Kuramochi, E.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Latka, I.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Li, Y. Q.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Løvhaugen, P.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Mace, J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Maquelin, K.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Mayer, G.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Mazilu, M.

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Nampoori, V. P. N.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Neugebauer, U.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Newton, R. J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Notomi, M.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Pappu, V.

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

Pardalos, P. M.

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

Paterson, L.

Popp, J.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Radhakrishnan, P.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Riches, A.

Rothhardt, M.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Schreuder, E.

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Schuster, K.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Sheeba, M.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Sibbett, W.

Smith, D.

Spittel, R.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Stanca, S.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Subramanian, A. Z.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Sumikura, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Tang, W.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Taniyama, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Tervahauta, H.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Thomas, K. J.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Unger, S.

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

Uytewaal-Aarts, M.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Vallabhan, C. P. G.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

van de Vossenberg, J.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

van der Gaag, B.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

van der Kooij, D.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

van Leest, T.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).

van Wezel, A. P.

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Wilkinson, J. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Xie, C.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Anal. Chem. (1)

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Anal. Methods (1)

J. van de Vossenberg, H. Tervahauta, K. Maquelin, C. H. W. Blokker-Koopmans, M. Uytewaal-Aarts, D. van der Kooij, A. P. van Wezel, and B. van der Gaag, “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679–2687 (2013).
[Crossref]

Appl. Phys. Lett. (1)

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

J Biophotonics (1)

J. W. Chan, “Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells,” J Biophotonics 6(1), 36–48 (2013).
[Crossref] [PubMed]

J. Eur. Opt. Soc-Rapid. (1)

T. van Leest, F. Bernal Arango, and J. Caro, “Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides,” J. Eur. Opt. Soc-Rapid. 6, 10221-10226(2011).

J. Opt. A, Pure Appl. Opt. (1)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

J. Polym. Sci., Polym. Phys. Ed. (1)

B. Jasse, R. S. Chao, and J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene,” J. Polym. Sci., Polym. Phys. Ed. 16(12), 2157–2169 (1978).
[Crossref]

J. Raman Spectrosc. (1)

M. B. Fenn, V. Pappu, P. G. Georgeiv, and P. M. Pardalos, “Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines,” J. Raman Spectrosc. 44(7), 939–948 (2013).
[Crossref]

Lab Chip (4)

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca, I. Latka, K. Schuster, J. Kobelke, S. Unger, T. Henkel, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles,” Lab Chip 13(6), 1109–1113 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys. 1(1), 23–30 (2005).
[Crossref]

Opt. Express (2)

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Other (3)

Lumerical FDTD Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ (accessed Nov. 14, 2014).

TriPleXTMis a trademark for LioniX’s waveguide technology.

A. Leinse, R. Heideman, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPleX photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in Proceedings of the 16th European Conference on Integrated Optics, ECIO 2012, 1–2 (2012).

Supplementary Material (2)

» Media 1: MP4 (3817 KB)     
» Media 2: MP4 (3523 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-sectional schematic with dimensions and materials of the waveguide. The blue trapezoidal box shape is Si3N4. Both the inner region of the box and the surrounding cladding are SiO2. (b) Cross-sectional SEM picture of a waveguide with the box structure. (c) Mode profile of the lowest TE mode in the waveguide, represented as Pz, the z-component of the Poynting vector. Colours from purple to red indicate increasing values of Pz. (d) Microscope image of the Raman trapping device taken while red light was coupled into the input waveguide to check waveguide continuity, giving the red glow. A 50/50 Y-junction splits the input waveguide in two half-circular arms (circle diameter = 7 mm), which guide the light to the fluidic channel. The waveguiding structures are imaged as white due to saturation of the camera. For clarity, white saturation regions due to scattering loss at the input waveguide and at the trap have been removed. (e) Microscope image of the central region of the device. Each of the two waveguides terminates in a wall of the 5 μm wide fluidic channel, which tapers up in two steps. Definition of the coordinate axes as indicated in b) and e).
Fig. 2
Fig. 2 Schematic of the setup for optical trapping and Raman spectroscopy with the dual-waveguide trap, which is clamped in a holder with ports for fluidic access. Components: CF − laser clean-up filter, FC − fibre coupler, M1, M2 − dichroic mirrors, M3 − beam splitter, L1, PH, L2 − lenses and pinhole of confocal filter, EF − razor edge filter, L3, L4 − aperture matching lens and imaging lens for spectrometer and camera, respectively. In most of the experiments, the power offered by the fibre to the input waveguide was 125 mW, as indicated.
Fig. 3
Fig. 3 Simulated patterns of the intensity of the electric field in (a) the xz-plane and (b) the yz-plane. The pattern results from excitation of the lowest TE mode and shows standing wave modulation due to beam interference. The polarization is in the x-direction.
Fig. 4
Fig. 4 Snapshots (a) and (b, c) of the online supplementary Media 1 and Media 2, respectively. A single trapped bead can be seen in a). In b) and c) a lump a five trapped beads and a linear chain of four trapped beads are shown, respectively. The respective water flow velocities for the panels are 90, 34 and 43 μm/s. Dashed lines indicate the boundaries of the fluidic channel and the dual waveguides.
Fig. 5
Fig. 5 Calculated forces Fx, Fy+(-) and Fz for displacement of a 1 μm polystyrene bead on the three corresponding axes. The axes y+(y-) are defined in Fig. 1b.
Fig. 6
Fig. 6 Raman spectra of an optically trapped polystyrene 1 µm bead, for integration times as indicated. Ptrap = 5.1 mW. The Raman shifts attached to the dashed lines have been taken from a standard Raman spectrum of polystyrene [21]. From the spectra a background has been subtracted and they have been slightly smoothed, as described in the text. The two 15 s spectra indicated with (A) and (B) demonstrate the repeatability of the measurements. The dotted lines are the axes of the respective spectra, showing that the intensity is negative for higher shifts as a result of the background-subtraction procedure (see text). The numbers in brackets adjacent to the integration times are the vertical offsets applied to the spectra for clarity.

Metrics