Abstract

Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to −28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber’s two supported mode group (LP01 and LP11). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes’ distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of analog links using spatial modes in km-scale few mode fiber

Jing Du, Dequan Xie, Chen Yang, and Jian Wang
Opt. Express 25(4) 3613-3620 (2017)

All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode

Feng Feng, Xianqing Jin, Dominic O’Brien, Frank Payne, Yongmin Jung, Qiongyue Kang, Pranabesh Barua, Jayanta K. Sahu, Shaif-ul Alam, David J. Richardson, and Timothy D. Wilkinson
Opt. Express 25(12) 13773-13781 (2017)

Modal gain equalization of 18 modes using a single-trench ring-core EDFA

Ankita Gaur and Vipul Rastogi
J. Opt. Soc. Am. B 35(9) 2211-2216 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz Spectral Efficiency WDM Transmission over 177-km Few-Mode Fiber”, OFC ’13, PDP5A.1 (2013).
  2. S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-Multiplexed 6×20-GBd QPSK Transmission over 1200-km DGD-Compensated Few-Mode Fiber”, OFC ’12, PDP5C.5 (2012).
  3. R. Ryf, M. A. Mestre, A. Gnauck, S. Randel, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. Peckham, A. H. McCurdy and R. Lingle, “Low-Loss Mode Coupler for Mode-Multiplexed transmission in Few-Mode Fiber”, OFC ’12, PDP5B.5 (2012).
  4. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [Crossref] [PubMed]
  5. M. Blau and D. M. Marom, “Optimization of Spatial Aperture-Sampled Mode Multiplexer for a Three-Mode Fiber,” IEEE Photon. Technol. Lett. 24(23), 2101–2104 (2012).
    [Crossref]
  6. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
    [Crossref] [PubMed]
  7. Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express 19(26), B952–B957 (2011).
    [Crossref] [PubMed]
  8. M. Salsi, D. Peyrot, G. Charlet, S. Bigo, R. Ryf, N. K. Fontaine, M. A. Mestre, S. Randel, X. Palou, C. Bolle, B. Guan, G. Le Cocq, L. Bigot, and Y. Quiquempois, “A Six-Mode Erbium-Doped Fiber Amplifier”, ECOC’12, Th.3.A.6 (2012).
  9. G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
    [Crossref] [PubMed]
  10. N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
    [Crossref] [PubMed]
  11. K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).
  12. E. Ip, Y. G. Ruo, M. Li, Y. Huang, and J. Kahn, “Experimental demonstration of a Gain-Flattening Filter for Few-Mode Fiber based on a Spatial Light Modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4A.5.
    [Crossref]
  13. N. K. Fontaine, R. Ryf, M. A. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “Characterization of space division multiplexing systems using a swept-wavelength interferometer,” OFC '13, OW1K.2 (2013).
  14. H. Bülow, “optical mode demultiplexing by optical mimo filtering of spatial samples,” IEEE Photon. Technol. Lett. 24(12), 1045–1047 (2012).
    [Crossref]
  15. Q. Kang, E.-L. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP₀₁ pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
    [Crossref] [PubMed]
  16. Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, and D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (6)

M. Blau and D. M. Marom, “Optimization of Spatial Aperture-Sampled Mode Multiplexer for a Three-Mode Fiber,” IEEE Photon. Technol. Lett. 24(23), 2101–2104 (2012).
[Crossref]

H. Bülow, “optical mode demultiplexing by optical mimo filtering of spatial samples,” IEEE Photon. Technol. Lett. 24(12), 1045–1047 (2012).
[Crossref]

N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
[Crossref] [PubMed]

Q. Kang, E.-L. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP₀₁ pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref] [PubMed]

G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
[Crossref] [PubMed]

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[Crossref] [PubMed]

2011 (1)

2004 (1)

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Alam, S.

Alam, S. U.

Alam, S.-U.

Bai, N.

Baskiotis, C.

Bickham, S.

Bigot, L.

Bigot-Astruc, M.

Bland-Hawthorn, J.

Blau, M.

M. Blau and D. M. Marom, “Optimization of Spatial Aperture-Sampled Mode Multiplexer for a Three-Mode Fiber,” IEEE Photon. Technol. Lett. 24(23), 2101–2104 (2012).
[Crossref]

Bülow, H.

H. Bülow, “optical mode demultiplexing by optical mimo filtering of spatial samples,” IEEE Photon. Technol. Lett. 24(12), 1045–1047 (2012).
[Crossref]

Chong, C.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Corbett, B.

Dhar, A.

Ercan, B.

Fontaine, N. K.

Fujita, H.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Giles, D.

Giles, I. P.

Grüner-Nielsen, L.

Huang, Y. K.

Inan, B.

Ip, E.

Isamoto, K.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Jung, Y.

Kang, Q.

Kato, K.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Koebele, C.

Kuschnerov, M.

Lau, A. P.

Le Cocq, G.

Le Rouge, A.

Leon-Saval, S. G.

Li, G.

Li, M. J.

Li, Z.

Lim, E.-L.

Liñares, J.

Lu, C.

Luo, Y.

Man Chung, K.

Marom, D. M.

M. Blau and D. M. Marom, “Optimization of Spatial Aperture-Sampled Mode Multiplexer for a Three-Mode Fiber,” IEEE Photon. Technol. Lett. 24(23), 2101–2104 (2012).
[Crossref]

Mateo, E.

Montero, C.

Moreno, V.

Morosawa, A.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Peng, G. D.

Poletti, F.

Prieto, X.

Quiquempois, Y.

Richardson, D. J.

Ryf, R.

Sahu, J.

Sahu, J. K.

Salazar-Gil, J. R.

Salsi, M.

Sillard, P.

Sleiffer, V. A. J. M.

Tam, H. Y.

Teh, P. S.

Ten, S.

Toshiyoshi, H.

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

Tse, V.

Veljanovski, V.

Wang, T.

Winfield, R.

Yaman, F.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-volt operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10, 570–578 (2004).

IEEE Photon. Technol. Lett. (2)

H. Bülow, “optical mode demultiplexing by optical mimo filtering of spatial samples,” IEEE Photon. Technol. Lett. 24(12), 1045–1047 (2012).
[Crossref]

M. Blau and D. M. Marom, “Optimization of Spatial Aperture-Sampled Mode Multiplexer for a Three-Mode Fiber,” IEEE Photon. Technol. Lett. 24(23), 2101–2104 (2012).
[Crossref]

Opt. Express (7)

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
[Crossref] [PubMed]

Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express 19(26), B952–B957 (2011).
[Crossref] [PubMed]

G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
[Crossref] [PubMed]

N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
[Crossref] [PubMed]

Q. Kang, E.-L. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP₀₁ pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref] [PubMed]

Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, and D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013).
[Crossref] [PubMed]

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[Crossref] [PubMed]

Other (6)

E. Ip, Y. G. Ruo, M. Li, Y. Huang, and J. Kahn, “Experimental demonstration of a Gain-Flattening Filter for Few-Mode Fiber based on a Spatial Light Modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4A.5.
[Crossref]

N. K. Fontaine, R. Ryf, M. A. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “Characterization of space division multiplexing systems using a swept-wavelength interferometer,” OFC '13, OW1K.2 (2013).

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz Spectral Efficiency WDM Transmission over 177-km Few-Mode Fiber”, OFC ’13, PDP5A.1 (2013).

S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-Multiplexed 6×20-GBd QPSK Transmission over 1200-km DGD-Compensated Few-Mode Fiber”, OFC ’12, PDP5C.5 (2012).

R. Ryf, M. A. Mestre, A. Gnauck, S. Randel, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. Peckham, A. H. McCurdy and R. Lingle, “Low-Loss Mode Coupler for Mode-Multiplexed transmission in Few-Mode Fiber”, OFC ’12, PDP5B.5 (2012).

M. Salsi, D. Peyrot, G. Charlet, S. Bigo, R. Ryf, N. K. Fontaine, M. A. Mestre, S. Randel, X. Palou, C. Bolle, B. Guan, G. Le Cocq, L. Bigot, and Y. Quiquempois, “A Six-Mode Erbium-Doped Fiber Amplifier”, ECOC’12, Th.3.A.6 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Application of SMF-VOA solutions to FMF resulting in uneven mode attenuation and mode mixing. (A) Three spatial fiber modes. (B) VOA by MEMS beam steering. The imaged beam is detuned from the fiber facet, resulting in overlap integral between offset modes. (C) VOA by MEMS shutter. The beam is clipped, resulting in overlap integral over the remaining beam regions.
Fig. 2
Fig. 2 (a) Polarization-diverse free-space optical arrangement of dynamic mode-group optical attenuator with amplitude spatial light modulator. (b) Experimental characterization technique using swept laser interferometry, obtaining full device complex matrix response.
Fig. 3
Fig. 3 FMF-VOA functionality. A) Flat response of attenuation over 25dB of attenuation. B) MDL at different attenuation values. MDL shows no increase until attenuation level reaches noise floor. Observed constant MDL is that of mux/ demux system; VOA settings do not alter it.
Fig. 4
Fig. 4 NIR images of reflected optical beam from LCoS SLM. a) LP01 mode excitation, b) LP11 mode group excitation, c) both mode groups illuminate SLM with circular block attenuation pattern applied for predominantly LP01 suppression and d) both spatial mode groups with circular aperture attenuating pattern for LP11 suppression.
Fig. 5
Fig. 5 Dynamic mode group equalizer responses. (a-b) Simulation and (c-d) measurement results of attenuation, employing a blocking circle (a, c) or blocking aperture (b, d) pattern. As the blocking radius increases, both modes attenuate, with the LP01 incurring significant loss earlier. For the circular apertures, both modes’ transmission increase with aperture radius, with the LP01 transmission rising earlier.
Fig. 6
Fig. 6 Intensity patterns of the first four mode groups in a six mode fiber: (a) LP01 mode (b) LP11 mode group (c) LP21 mode group and (d) LP02 mode. (e) Radial mode intensity distribution of the four mode groups. Dashed vertical lines denotes the core-cladding interface. (f) Radial Fourier transform intensity distribution of the four mode groups.
Fig. 7
Fig. 7 Dynamic mode group equalizer response simulations for a six mode fiber. Blocking and transmitting annular patterns for specific mode attenuation:(a) attenuating LP01 mode (b) attenuating LP21 mode (c) attenuating LP11 mode (d) attenuating LP21 mode (e) attenuating LP02 mode

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ φ 1 φ 2 φ 3 φ 4 ]= [ ξ 11 0 0 ξ 14 0 ξ 22 0 0 0 0 ξ 33 0 ξ 41 0 0 ξ 44 ] DME [ 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] DMG [ φ 1 φ 2 φ 3 φ 4 ]

Metrics