Abstract

We demonstrate a compact lensless microscope which can capture video-rate phase contrast images of moving objects and allows numerical scanning of the focal distance after recording. Using only an RGB-detector and illumination from a single mode fiber, diffraction patterns at three wavelengths are recorded simultaneously, enabling high-speed data collection and reconstruction of phase and amplitude. The technique is used for imaging of a moving test target, beads in a flow cell, and imaging of Caenorhabditis elegans moving in a droplet of liquid.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust autofocusing method for multi-wavelength lensless imaging

Jian Liu, Yixuan Zhao, Cheng Guo, Weisong Zhao, Yutian Zhang, Changliang Guo, and Haoyu Li
Opt. Express 27(17) 23814-23829 (2019)

Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm

Martín Sanz, José Angel Picazo-Bueno, Javier García, and Vicente Micó
Opt. Express 23(16) 21352-21365 (2015)

Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix

Chao Zuo, Jiasong Sun, Jialin Zhang, Yan Hu, and Qian Chen
Opt. Express 23(11) 14314-14328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39, 1326–1329 (2014).
    [Crossref] [PubMed]
  2. I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
    [Crossref] [PubMed]
  3. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
    [Crossref] [PubMed]
  4. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref] [PubMed]
  5. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
    [Crossref] [PubMed]
  6. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
    [Crossref] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [Crossref]
  8. M. Reed Teague, “Deterministic phase retrieval: a Greens function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [Crossref]
  9. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref] [PubMed]
  10. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
    [Crossref]
  11. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
    [Crossref] [PubMed]
  12. T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
    [Crossref] [PubMed]
  13. K. A. Nugent, “X-ray noninterferometric phase imaging: a unified picture,” J. Opt. Soc. Am. A 24, 536 (2007).
    [Crossref]
  14. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [Crossref] [PubMed]

2014 (3)

2012 (1)

2011 (1)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

2010 (2)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

2007 (1)

2001 (2)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

1999 (1)

1983 (1)

1982 (1)

1966 (1)

Allen, L.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Bevilacqua, F.

Bishara, W.

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Coskun, A. F.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
[Crossref] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

Cuche, E.

Depeursinge, C.

Eikema, K. S. E.

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Fienup, J. R.

Greenbaum, A.

Gureyev, T.

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Kogelnik, H.

Lee, S. A.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Li, T.

Mayo, S.

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Noom, D. W. E.

Nugent, K. A.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Oxley, M.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Ozcan, A.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
[Crossref] [PubMed]

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
[Crossref] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Paganin, D.

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Reed Teague, M.

Sencan, I.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Sikora, U.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
[Crossref] [PubMed]

Stevenson, A.

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Su, T.-W.

Tian, L.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Waller, L.

Wang, J.

Wilkins, S.

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Witte, S.

Yang, C.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Lab Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. Gureyev, S. Mayo, S. Wilkins, D. Paganin, and A. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X Rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).
[Crossref] [PubMed]

Scientific Reports (1)

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Scientific Reports 4, 3760 (2014).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MP4 (2014 KB)     
» Media 2: MP4 (2023 KB)     
» Media 3: MP4 (6800 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The imaging setup, where a flow cell with beads is taken as an example sample. The wavelengths λ1, λ2, λ3 are obtained from laser diodes at 636 nm, 519 nm and 402 nm, respectively, coupled in a single-mode fiber. BS: fiber beamsplitter/combiner.
Fig. 2
Fig. 2 High speed refocusable lensless imaging of a moving USAF test target. (a), (b) Single shot images at different times. (c), (d) Reconstructed image at different times. In (c), the smallest features of group seven, 2.19 μm wide, are cleary visible. The scale bars are 50 μm wide. See Media 1 for the reconstructed video.
Fig. 3
Fig. 3 Beads with a diameter of 20 μm in a flow cell. (a) Images at different times at a single focal distance. (b) Images at different focal distances at a single point in time. The indicated focal distances are the numbers that have been used in the phase retrieval algorithm, which correspond to the geometric distance between object and camera scaled by a factor (1 + d/R) because of the finite wavefront curvature (see Discussion section for details). Media 2 shows a video of the moving beads with refocusing at a single time frame.
Fig. 4
Fig. 4 (a) Single shot diffraction pattern of C. Elegans. (b) Reconstructed intensity image using data at three wavelengths as input for the reconstruction algorithm. (c) Reconstructed intensity image using only the red and green wavelength channels. (d) Reconstructed phase image at the same focal distance as (c). (e) Intensity image at different focal plane, using the red and green wavelength channels for reconstruction. (f) Phase image at the same focal distance as (e).
Fig. 5
Fig. 5 (a) Illumination of a sample of size L with a wavefront with a radius of curvature R and propagation by a distance d, which will have the same intensity distribution as (b), where the sample is illuminated by a flat wavefront and the sample size and propagation distance are magnified by (1+d/R).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( x 2 x 2 ) = ( A B C D ) ( x 1 x 1 ) ,
( 1 d 0 1 ) ( 1 0 1 R 1 ) = ( 1 + d R d 1 R 1 ) .
( 1 d ( 1 + d R ) 0 1 ) ( 1 + d R 0 0 ( 1 + d R ) 1 ) = ( 1 + d R d 0 ( 1 + d R ) 1 ) ,

Metrics