Abstract

Using finite-difference time-domain simulations, we study the interactions of electromagnetic radiation with a square array of dielectric rods parallel to the electric vector. We observe the electric and magnetic Mie resonances which induce intervals of negative effective permittivity and permeability and which contribute to the formation of the photonic band gaps. Owing to the interplay of these phenomena, a narrow spectral range with a negative refractive index can occur. However, this requires the filling fraction of the dielectric to fall into a well defined interval of values and its permittivity to exceed a minimum of about 50. We discuss these phenomena from the perspective of both photonic crystal and metamaterial concepts.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction

Marcelo Davanço, Yaroslav Urzhumov, and Gennady Shvets
Opt. Express 15(15) 9681-9691 (2007)

Dielectric metamaterials with electric response

Ekaterina E. Maslova, Mikhail F. Limonov, and Mikhail V. Rybin
Opt. Lett. 43(22) 5516-5519 (2018)

Monolithic CMOS-compatible zero-index metamaterials

Daryl I. Vulis, Yang Li, Orad Reshef, Philip Camayd-Muñoz, Mei Yin, Shota Kita, Marko Lončar, and Eric Mazur
Opt. Express 25(11) 12381-12399 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
    [Crossref] [PubMed]
  3. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [Crossref] [PubMed]
  4. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
    [Crossref]
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
    [Crossref] [PubMed]
  9. I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
    [Crossref]
  10. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matt. 17, 3717 (2005).
  11. M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
    [Crossref]
  12. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
    [Crossref]
  13. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [Crossref] [PubMed]
  14. D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
    [Crossref]
  15. Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
    [Crossref]
  16. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
    [Crossref] [PubMed]
  17. H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
    [Crossref]
  18. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
    [Crossref]
  19. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [Crossref] [PubMed]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  21. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  22. C. R. Simovski, “Material parameters of metamaterials (a review),” Optics and Spectroscopy 107, 766–793 (2009).
    [Crossref]
  23. V. A. Markel and I. Tsukerman, “Current-driven homogenization and effective medium parameters for finite samples,” Phys. Rev. B 88, 125131 (2013).
    [Crossref]
  24. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
    [Crossref]
  25. V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
    [Crossref]
  26. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [Crossref]

2013 (1)

V. A. Markel and I. Tsukerman, “Current-driven homogenization and effective medium parameters for finite samples,” Phys. Rev. B 88, 125131 (2013).
[Crossref]

2012 (2)

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

2011 (1)

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (5)

C. R. Simovski, “Material parameters of metamaterials (a review),” Optics and Spectroscopy 107, 766–793 (2009).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

2008 (2)

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

2007 (2)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

2005 (1)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matt. 17, 3717 (2005).

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

2003 (1)

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

1991 (2)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bouchitte, G.

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

Bourel, C.

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Chung, U.-C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Du, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Elissalde, C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Fattakhova-Rohlfing, D.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Felbacq, D.

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Guizal, B.

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Huang, X.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kadlec, C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Kadlec, F.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Kholodnyak, D. V.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Kihm, J.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Koschny, T.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Kozlov, D. S.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Kužel, P.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Lee, C.-W.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Li, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Li, L.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Maglione, M.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Maradudin, A.

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

Markel, V. A.

V. A. Markel and I. Tsukerman, “Current-driven homogenization and effective medium parameters for finite samples,” Phys. Rev. B 88, 125131 (2013).
[Crossref]

Markoš, P.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

Meng, Y.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Moch, P.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matt. 17, 3717 (2005).

Mounaix, P.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Müller, V.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Munina, I. V.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Nemec, H.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Odit, M. A.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Panaitov, G.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Park, Y.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Plihal, M.

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Rychetský, I.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[Crossref]

Shambrook, A.

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

Sheng, P.

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

Simovski, C. R.

C. R. Simovski, “Material parameters of metamaterials (a review),” Optics and Spectroscopy 107, 766–793 (2009).
[Crossref]

Sitnikova, M. F.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Skoromets, V.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

Smith, D. R.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Tsukerman, I.

V. A. Markel and I. Tsukerman, “Current-driven homogenization and effective medium parameters for finite samples,” Phys. Rev. B 88, 125131 (2013).
[Crossref]

Turalchuk, P. A.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Turgaliev, V.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Ustinov, A.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Vendik, I. B.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Vendik, O. G.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yahiaoui, R.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Yannopapas, V.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matt. 17, 3717 (2005).

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Zemlyakov, K. N.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Zhang, X.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Zhao, H.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Zubko, S. P.

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE Trans. Microw. Theo. and Techn. (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theo. and Techn. 47, 2075–2084 (1999).
[Crossref]

IEEE Trans. THz Sci. Techn. (1)

I. B. Vendik, O. G. Vendik, M. A. Odit, D. V. Kholodnyak, S. P. Zubko, M. F. Sitnikova, P. A. Turalchuk, K. N. Zemlyakov, I. V. Munina, D. S. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, “Tunable metamaterials for controlling THz radiation,” IEEE Trans. THz Sci. Techn. 2, 538–549 (2012).
[Crossref]

J. Phys.: Condens. Matt. (1)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matt. 17, 3717 (2005).

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Microw. Opt. Technol. Lett. (1)

D. Felbacq, B. Guizal, G. Bouchitte, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009).
[Crossref]

Nat. Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Plihal, A. Shambrook, A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991).
[Crossref]

Optics and Spectroscopy (1)

C. R. Simovski, “Material parameters of metamaterials (a review),” Optics and Spectroscopy 107, 766–793 (2009).
[Crossref]

Phys. Rev. B (4)

V. A. Markel and I. Tsukerman, “Current-driven homogenization and effective medium parameters for finite samples,” Phys. Rev. B 88, 125131 (2013).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetský, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84, 174121 (2011).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Phys. Rev. E (2)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Phys. Rev. Lett. (8)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Perspective view of the unit cell; (b) its cross-sections with the resonant modes excited by a plane wave with Ex, Hy and kz. The first Mie resonance has an electric dipole moment only, while the second one has a magnetic dipole moment instead. The red and blue color shows positive and negative values of the Ex component of the electric field, while the magnetic field is represented by the arrows.
Fig. 2
Fig. 2 Results of the FDTD simulations for a single layer of dielectric rods with εr = 100, ρ = 10 μm. The spectra of reflection |r| and transmission |t| amplitudes share their frequency axes with the retrieved complex effective index of refraction Neff, permittivity εeff and permeability μeff, whose imaginary parts are denoted by dashed lines. The frequency ranges where εeff and μeff have no physical interpretation (Bragg band gaps or higher order photonic bands) are gray shaded.
Fig. 3
Fig. 3 Real (N′eff, left panel) and imaginary (N″eff, right panel) parts of the refractive index for a dielectric rod array with permittivity εr = 100, radius ρ = 10 μm and a variable unit-cell size 20 μm < a < 200 μm. The three solid horizontal lines correspond to the values used in Fig. 2.
Fig. 4
Fig. 4 Scheme of band gaps and Mie resonances under the same conditions as in Fig. 3.
Fig. 5
Fig. 5 Scheme of band gaps and Mie resonances for dielectric permittivity εr = 30. The Mie resonances shift to higher frequencies relative to the band gaps and no N′eff < 0 region is formed for any unit-cell size (cf. Fig. 4)
Fig. 6
Fig. 6 (a) Real and (b) imaginary parts of arccosine of a complex argument υ; the thick curve shows a possible trajectory of υ (upon a frequency variation), which intersects the branch cuts in points marked as R, L. (c) From top to bottom: example function υ(f), its ordinary arccosine, example branch and sign choices ensuring the continuity of the arccosine function, and arccos(cont) υ, as determined by the algorithm described in the Appendix.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k ( f ) = 2 π f N eff ( f ) / c .
k ( f ) = q π a ,
N eff ( f ) = q c 2 a f ;
N eff ( f ) = c 2 a f .
N eff = ± arccos ( 1 r 2 + t 2 2 t ) + 2 π m k d
Z eff = ± ( 1 + r ) 2 t 2 ( 1 r ) 2 t 2

Metrics