Abstract

We report on a metamolecule antenna, based on a fish-scale design but augmented with two split-ring resonators (SRRs) placed within the fish-scale loops. The properties of the antenna resonator, with and without additional SRRs, were examined using finite element method simulations (COMSOL Multiphysics). The simulation findings were subsequently confirmed experimentally, using a vector network analyser coupled to an antenna-loaded coplanar waveguide (CPW). The addition of SRRs to the fish-scale meta-molecule leads to a demonstrably large increase in microwave-absorption. It is shown that the fish-scale/SRR/CPW combination performs as a microwave antenna. Simulations of the antenna gain and far-field emission are presented and discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear magnetic metamaterials

Ilya V. Shadrivov, Alexander B. Kozyrev, DanielW. van der Weide, and Yuri S. Kivshar
Opt. Express 16(25) 20266-20271 (2008)

Magnetic control of a meta-molecule

Gavin B. G. Stenning, Graham J. Bowden, Lewis C. Maple, Simon A. Gregory, Alberto Sposito, Robert W. Eason, Nikolay I. Zheludev, and Peter A. J. de Groot
Opt. Express 21(2) 1456-1464 (2013)

Hybrid metamaterial design and fabrication for terahertz resonance response enhancement

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong
Opt. Express 18(12) 12421-12429 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  2. W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
    [Crossref]
  3. G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
    [Crossref] [PubMed]
  4. S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
    [Crossref]
  5. J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
    [Crossref]
  6. P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.
  7. C.-J. Lee, K. Leong, and T. Itoh, “Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, (2006), pp. 935–938.
  8. I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
    [Crossref]
  9. K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
    [Crossref]
  10. M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
    [Crossref]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
    [Crossref]
  12. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
    [Crossref]
  13. W. Hardy and L. Whitehead, “Split-ring resonator for use in magnetic resonance from 200–2000 mhz,” Review of Scientific Instruments 52, 213–216 (1981).
    [Crossref]
  14. F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
    [Crossref]

2014 (1)

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

2013 (1)

2011 (1)

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

2010 (1)

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

2009 (1)

M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
[Crossref]

2007 (1)

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

2006 (1)

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[Crossref]

2005 (2)

J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

2003 (1)

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1981 (1)

W. Hardy and L. Whitehead, “Split-ring resonator for use in magnetic resonance from 200–2000 mhz,” Review of Scientific Instruments 52, 213–216 (1981).
[Crossref]

Barbin, S.

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

Basov, D. N.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[Crossref]

Bonache, J.

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Bowden, G. J.

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
[Crossref] [PubMed]

Castillo-Aranibar, P.

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

Chen, Y.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

Cho, C.

J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
[Crossref]

de Groot, P. A. J.

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
[Crossref] [PubMed]

De Raedt, W.

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

Eason, R. W.

Falcone, F.

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

Garcia-Lamperez, A.

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

Gil, I.

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

Grede, A.

M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
[Crossref]

Gregory, S. A.

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
[Crossref] [PubMed]

Hardy, W.

W. Hardy and L. Whitehead, “Split-ring resonator for use in magnetic resonance from 200–2000 mhz,” Review of Scientific Instruments 52, 213–216 (1981).
[Crossref]

Henke, H.

M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
[Crossref]

Huang, F. M.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

Itoh, T.

C.-J. Lee, K. Leong, and T. Itoh, “Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, (2006), pp. 935–938.

Kao, T. S.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

Kim, J.

J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
[Crossref]

Lai, H.

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

Lee, C.-J.

C.-J. Lee, K. Leong, and T. Itoh, “Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, (2006), pp. 935–938.

Lee, J.

J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
[Crossref]

Lei, Z.

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

Leong, K.

C.-J. Lee, K. Leong, and T. Itoh, “Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, (2006), pp. 935–938.

Maple, L. C.

Marques, R.

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Mart n, F.

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Martin, F.

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Padilla, W. J.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Palandoken, M.

M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

Rogers, E. T. F.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

Rottenberg, X.

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

Salazar-Palma, M.

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Segovia-Vargas, D.

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

Smith, D. R.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Sorolla, M.

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Sposito, A.

Stenning, G. B. G.

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H.

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

Whitehead, L.

W. Hardy and L. Whitehead, “Split-ring resonator for use in magnetic resonance from 200–2000 mhz,” Review of Scientific Instruments 52, 213–216 (1981).
[Crossref]

Xie, Y.

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

Yang, K.

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

Zheludev, N. I.

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

G. B. G. Stenning, G. J. Bowden, L. C. Maple, S. A. Gregory, A. Sposito, R. W. Eason, N. I. Zheludev, and P. A. J. de Groot, “Magnetic control of a meta-molecule,” Opt. Express 21, 1456–1464 (2013).
[Crossref] [PubMed]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

Appl. Phys. Lett. (2)

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96, 041103 (2010).
[Crossref]

F. Mart n, J. Bonache, F. Falcone, M. Sorolla, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett. 83, 4652–4654 (2003).
[Crossref]

Electron. Lett. (3)

J. Kim, C. Cho, and J. Lee, “CPW bandstop filter using slot-type SRRs,” Electron. Lett. 41, 1333–1334 (2005).
[Crossref]

I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at q-band based on RF-MEMS metamaterials,” Electron. Lett. 43, 1153 (2007).
[Crossref]

K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, “CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications,” Electron. Lett. 47, 685–686 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Palandoken, A. Grede, and H. Henke, “Broadband microstrip antenna with left-handed metamaterials,” IEEE Trans. Antennas Propag. 57, 331–338 (2009).
[Crossref]

Materials Today (1)

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Materials Today 9, 28–35 (2006).
[Crossref]

New J. Phys (1)

S. A. Gregory, G. B. G. Stenning, G. J. Bowden, N. I. Zheludev, and P. A. J. de Groot, “Giant magnetic modulation of a planar, hybrid metamolecule resonance,” New J. Phys 16, 063002 (2014).
[Crossref]

Opt. Express (1)

Phys. Rev. E (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Review of Scientific Instruments (1)

W. Hardy and L. Whitehead, “Split-ring resonator for use in magnetic resonance from 200–2000 mhz,” Review of Scientific Instruments 52, 213–216 (1981).
[Crossref]

Other (2)

P. Castillo-Aranibar, A. Garcia-Lamperez, D. Segovia-Vargas, M. Salazar-Palma, and S. Barbin, “”Multiple split-ring resonators for tri-band filter with asymmetric response,” in Microwave Optoelectronics Conference (IMOC), 2011SBMO/IEEE MTT-S International, (2011), pp. 75–78.

C.-J. Lee, K. Leong, and T. Itoh, “Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, (2006), pp. 935–938.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The geometry and dimensions of one unit segment of the modified fish-scale structure. (b) The geometry of a fish-scale segment complete with inner ring to form a SRR. The angular gap θ used for the inner split ring is 40°. (c) The final hybrid fishscale/SRR metamolecule. In the finalised design, ro = 1.1 mm and ri = 0.9 mm.

Fig. 2
Fig. 2

(a) Top-down view of the hybrid structure on the CPW with placement relative to the CPW gaps (shown in red). (b) View from the side of the same sample showing the dimensions of the device layers.

Fig. 3
Fig. 3

The calculated S21 for the SRRs (blue), the fishscale (green), and the hybrid SRR and fishscale structure (red). Coupling beteen the two SRRs can be observed through the presence of two resonances in close proximity to one another in the red line.

Fig. 4
Fig. 4

Electric field maps produced by the CPW-loaded structures determined using COMSOL simulation. The y-polarized electric fields (according to the geometry of Fig. 1 and perpendicular to the propagation axis) for both the isolated fishscale (a) and hybrid structure (b) are shown. The structures were excited by a coaxial port from the right hand side of the figure.

Fig. 5
Fig. 5

Comparison of computational results (green) with experimental results (blue). The S21 for the fishscale is shown in (a) and that of the hybrid structure is shown in (b). The difference in transmission between the hybrid structure and the fishscale for both the experimental and computational results is shown in (c).

Fig. 6
Fig. 6

Absorption as a function of frequency and SRR size, normalised to the inner radius of the original SRR dimension, which is 0.9 mm is shown in (a). At smaller SRR sizes, both the original fishscale resonance and SRR introduced resonance can be identified separately. For the smallest geometry geometry, the fishscale resonance can be seen on the left while that of the SRRs is seen on the right. Absorption as a function of frequency for the two most extreme SRR sizes are presented as linescans in (b).

Fig. 7
Fig. 7

The y-polarization of the electric fields produced by the hybrid structure with SRRs 0.98 times the original size at the resonance around 15.9 GHz.

Fig. 8
Fig. 8

The comparison between the differences between Plost for the hybrid structure and that of the fishscale is shown in (a). The experimental results are in blue while the computational results are in red. The frequency shift (about 0.5 GHz) of the resonance between the two sets of results is consistent with the previous computational results shown in Fig. 5. The computational far field emission profile at resonance is shown in (b), and is presented in terms of far-field antenna gain in dBi. On the far field plot, the x-axis goes into the page, and the y and z axes point towards 0° and 90° respectively. The slice is taken at the centre of the metamolecule.

Metrics