Abstract

A polarization splitter based on a new type of dual-core photonic crystal fiber (DC-PCF) is proposed. The effects of geometrical parameters of the DC-PCF on performances of the polarization splitter are investigated by finite element method (FEM). The numerical results demonstrate that the polarization splitter possesses ultra-short length of 119.1 μm and high extinction ratio of 118.7 dB at the wavelength of 1.55 μm. Moreover, an extinction ratio greater than 20 dB is achieved over a broad bandwidth of 249 nm, i.e., from 1417 nm to 1666 nm, covering the S, C and L communication bands.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrashort polarization beam splitter based on liquid-filled dual-core photonic crystal fiber

Jianshuai Wang, Li Pei, Sijun Weng, Liangying Wu, Jing Li, and Tigang Ning
Appl. Opt. 57(14) 3847-3852 (2018)

Ultrabroadband polarization splitter based on three-core photonic crystal fibers

Wenliang Lu, Shuqin Lou, Xin Wang, Liwen Wang, and Ruijuan Feng
Appl. Opt. 52(3) 449-455 (2013)

Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core

Tongtong Zhao, Shuqin Lou, Xin Wang, Min Zhou, and Zhenggang Lian
Appl. Opt. 55(23) 6428-6434 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
    [Crossref]
  2. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
    [Crossref]
  3. C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
    [Crossref]
  4. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
    [Crossref]
  6. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
    [Crossref] [PubMed]
  7. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  8. M. J. Steel and R. M. Osgood., “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
    [Crossref]
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  11. S. Kim and C.-S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17(18), 15885–15890 (2009).
    [Crossref] [PubMed]
  12. M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
    [Crossref]
  13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893–900 (2006).
    [Crossref] [PubMed]
  14. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
    [Crossref] [PubMed]
  15. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13(19), 7365–7373 (2005).
    [Crossref] [PubMed]
  16. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
    [Crossref] [PubMed]
  17. L. Zhang and C. X. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11(9), 1015–1020 (2003).
    [Crossref] [PubMed]
  18. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22(5), 1367–1373 (2004).
    [Crossref]
  19. L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
    [Crossref]
  20. Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
    [Crossref]
  21. Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
    [Crossref]
  22. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31(4), 441–443 (2006).
    [Crossref] [PubMed]
  23. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49(16), 3042–3048 (2010).
    [Crossref] [PubMed]
  24. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
    [Crossref]
  25. W. Lu, S. Lou, X. Wang, L. Wang, and R. Feng, “Ultra- broadband polarization splitter based on three-core photonic crystal fibers,” Appl. Opt. 52(3), 449–455 (2013).
    [Crossref] [PubMed]
  26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  27. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
    [Crossref] [PubMed]
  28. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
    [Crossref]
  29. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  30. M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
    [Crossref]
  31. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006).
    [Crossref] [PubMed]
  32. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [Crossref] [PubMed]
  33. P. Domachuk, A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, “Transverse characterization of high air-fill fraction tapered photonic crystal fiber,” Appl. Opt. 44(19), 3885–3892 (2005).
    [Crossref] [PubMed]

2014 (2)

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

2013 (1)

2012 (1)

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

2011 (1)

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

2010 (2)

M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49(16), 3042–3048 (2010).
[Crossref] [PubMed]

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

2009 (1)

2006 (3)

2005 (2)

2004 (4)

2003 (2)

2002 (1)

2001 (4)

2000 (1)

1999 (1)

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

1997 (1)

1995 (1)

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

1993 (1)

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

1991 (1)

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

1990 (1)

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

1965 (1)

Aliramezani, M.

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

Arriaga, J.

Bennett, P. J.

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Broderick, N. G. R.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Chang, H. C.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Chapman, A.

Chen, M. Y.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Chen, M.-Y.

Chu, P. L.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Cox, F.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Cucinotta, A.

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Domachuk, P.

Eggleton, B. J.

Eguchi, M.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Eisenmann, M.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

Fellew, M.

Feng, R.

Florous, N.

Foroni, M.

Fu, X.-X.

Fujisawa, T.

Fujita, M.

Guiyao, Z.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Henry, G.

Issa, N. A.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Kawanishi, S.

Kee, C.-S.

Kim, S.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Koshiba, M.

Kubota, H.

Lantian, H.

Large, M. C.

Li, J. H.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Liu, Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Lou, S.

Lu, W.

Mägi, E.

Malitson, I. H.

Mangan, B. J.

Miliou, A. N.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Monro, T. M.

Nejad, S. M.

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

Nguyen, H. C.

Ortigosa-Blanch, A.

Osgood, R. M.

Peng, G. D.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Poli, F.

Ramaswamy, R. V.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Reeves, W. H.

Richardson, D. J.

Roberts, P.

Rosa, L.

Russell, P. S. J.

Saitoh, K.

Sato, Y.

Selleri, S.

Shuguang, L.

Shu-Guang, L.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Shuo, L.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Srivastava, R.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Steel, M. J.

Sun, B.

Suzuki, K.

Tanaka, M.

Tjugiarto, T.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Tsuji, Y.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

van Eijkelenborg, M. A.

Wada, K.

Wadsworth, W. J.

Wang, J. Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Wang, L.

Wang, R.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Wang, X.

Weidel, E.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

Wu, C. W.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Wu, T. L.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Yang, C.

Yang, C. X.

Ying, D.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Yu, R. J.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Zhang, L.

Zhang, Y.-K.

Zhang, Z.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Zhao, A. P.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Zhiyun, H.

Appl. Opt. (4)

Electron. Lett. (2)

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. A-Pure Appl. Opt. (1)

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (9)

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

S. Kim and C.-S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17(18), 15885–15890 (2009).
[Crossref] [PubMed]

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893–900 (2006).
[Crossref] [PubMed]

W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
[Crossref] [PubMed]

N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13(19), 7365–7373 (2005).
[Crossref] [PubMed]

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
[Crossref] [PubMed]

L. Zhang and C. X. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11(9), 1015–1020 (2003).
[Crossref] [PubMed]

Opt. Laser Technol. (3)

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross section of the proposed DC-PCF
Fig. 2
Fig. 2 CL and CLR versus (a) η1, at λ = 1.55μm, η2 = 1.7, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (b) η2, at λ = 1.55μm, η1 = 1.4, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (c) Λ1, at λ = 1.55μm,η1 = 1.4, η2 = 1.7 μm and Λ2 = 1.7 μm; (d) Λ2, at λ = 1.55μm, η1 = 1.4, η2 = 1.7 μm and Λ1 = 1.1 μm.
Fig. 3
Fig. 3 (a) Coupling lengths and the confinement losses versus wavelength at η1 = 1.4, η2 = 1.7, Λ1 = 1.1μm and Λ2 = 1.7μm; (b) Modal fields, (I) odd mode of X-polarization, (II) odd mode of Y-polarization, (III) even mode of X-polarization, and (IV) even mode of Y-polarization.
Fig. 4
Fig. 4 (a) Variations of normalized power with propagation distance at the optimal geometrical parameters; (b) Variation of ER with the wavelength at the optimal geometrical parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L i = π β i even β i odd = λ 2( n i even n i odd ) ,
CLR= L y L x = m n .
P iout = P in cos 2 ( πL 2 L i ).
N P i = P iout P in = cos 2 ( πL 2 L i ).
ER=10 log 10 ( P xout P yout )

Metrics