Abstract

We investigate return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion by means of the linear time-invariant system theory. It is shown that the problem of converting random RZ stream to NRZ stream can be reduced to constructing an appropriate transfer function for the linear filter. This approach is then used to propose novel optimally-designed single fiber Bragg grating (FBG) filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. The spectral response of the FBG is designed according to the optical spectra of the algebraic difference between isolated NRZ and RZ pulses, and the filter order is optimized for the maximum Q-factor of the output NRZ signals. Experimental results as well as simulations show that such an optimally-designed FBG can successfully perform RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator

Meng Xiong, Oskars Ozolins, Yunhong Ding, Bo Huang, Yi An, Haiyan Ou, Christophe Peucheret, and Xinliang Zhang
Opt. Express 20(25) 27263-27272 (2012)

Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals

Zheng Zhang, Yu Yu, and Xinliang Zhang
Opt. Express 19(13) 12427-12433 (2011)

All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA

Yu Yu, Bingrong Zou, Wenhan Wu, and Xinliang Zhang
Opt. Express 19(15) 14720-14725 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  2. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]
  3. S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
    [Crossref]
  4. T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
    [Crossref]
  5. A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, Z.-Y. Chen, and J. H. Lee, “Simultaneous all-optical RZ-to-NRZ format conversion for two tributaries in PDM signal using a single section of highly nonlinear fiber,” Opt. Express 20(9), 9890–9896 (2012).
    [Crossref] [PubMed]
  6. J. Du, Y. Dai, G. K. Lei, H. Wei, and C. Shu, “RZ-to-NRZ and NRZ-to-PRZ format conversions using a photonic crystal fiber based Mach-Zehnder interferometer,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC)(IEEE, 2010), pp. 1–3.
    [Crossref]
  7. B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
    [Crossref]
  8. W. Tang, M. Fok, and C. Shu, “20 Gb/s all-optical RZ to NRZ format conversion using frequency-doubling polarization-maintaining fiber loop mirror filter,” in Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on(IEEE, 2005), pp. 1577–1578.
    [Crossref]
  9. L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
    [Crossref]
  10. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2005), pp. CTuBB2–1- CTuBB2–2.
    [Crossref]
  11. Y. Yu, X. Zhang, and D. Huang, “All-optical RZ to NRZ format conversion with tunable fiber based delay interferometer,” in Optoelectronics, 2006 Optics Valley of China International Symposium on(IEEE, 2006), pp. 47–50.
    [Crossref]
  12. Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
    [Crossref]
  13. F. Wang, E. Xu, Y. Yu, and Y. Zhang, “All-optical 40 Gbit/s data format conversion between RZ and NRZ using a fiber delay interferometer and a single SOA,” in SPIE/OSA/IEEE Asia Communications and Photonics(International Society for Optics and Photonics, 2011), pp. 83080E–1-83080E–6.
  14. Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
    [Crossref]
  15. O. Ozolins, V. Bobrovs, and G. Ivanovs, “Conversion of 40 Gbit/s RZ-OOK to NRZ-OOK with a single uniform fibre Bragg grating,” in ELMAR, 2013 55th International Symposium(IEEE, 2013), pp. 121–124.
  16. P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
    [Crossref]
  17. O. Ozolins, V. Bobrovs, and G. Ivanovs, “Cascadability of uniform fibre Bragg grating for 40 Gbit/s RZ-OOK to NRZ-OOK conversion,” Opt. Photon. J. 3(02), 337–341 (2013).
    [Crossref]
  18. L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
    [Crossref]
  19. M. Xiong, O. Ozolins, Y. Ding, B. Huang, Y. An, H. Ou, C. Peucheret, and X. Zhang, “Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator,” Opt. Express 20(25), 27263–27272 (2012).
    [Crossref] [PubMed]
  20. E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
    [Crossref]
  21. H. Cao, J. Atai, X. Shu, and G. Chen, “Direct design of high channel-count fiber Bragg grating filters with low index modulation,” Opt. Express 20(11), 12095–12110 (2012).
    [Crossref] [PubMed]
  22. H. Cao, J. Sun, X. Zhang, L. Xiao, and D. Huang, “Novel design methodology for superstructure fiber Bragg grating comb-filter,” Acta Phys. Sin-Ch. Ed. 53, 3077–3082 (2004).
  23. A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [Crossref]
  24. N. Sotiropoulos, T. Koonen, and H. de Waardt, “Advanced differential modulation formats for optical access networks,” J. Lightwave Technol. 31(17), 2829–2843 (2013).
    [Crossref]
  25. P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
    [Crossref]
  26. Y. Yu, Z. Xinliang, W. Lun, W. Fei, and D. Huang, “Simple and flexible NRZ-DQPSK demodulation scheme,” in Asia Communications and Photonics Conference and Exhibition (ACP, 2009), pp. 1–2.
  27. Y. Lu, F. Liu, M. Qiu, and Y. Su, “All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators,” Opt. Express 15(21), 14275–14282 (2007).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

N. Sotiropoulos, T. Koonen, and H. de Waardt, “Advanced differential modulation formats for optical access networks,” J. Lightwave Technol. 31(17), 2829–2843 (2013).
[Crossref]

O. Ozolins, V. Bobrovs, and G. Ivanovs, “Cascadability of uniform fibre Bragg grating for 40 Gbit/s RZ-OOK to NRZ-OOK conversion,” Opt. Photon. J. 3(02), 337–341 (2013).
[Crossref]

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

2012 (4)

2011 (2)

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
[Crossref]

2007 (3)

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Y. Lu, F. Liu, M. Qiu, and Y. Su, “All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators,” Opt. Express 15(21), 14275–14282 (2007).
[Crossref] [PubMed]

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

2006 (2)

E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
[Crossref]

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

2005 (1)

2001 (1)

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[Crossref]

2000 (1)

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

1997 (1)

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

An, Y.

Atai, J.

Avramopoulos, H.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

Beleffi, G. T.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Bobrovs, V.

O. Ozolins, V. Bobrovs, and G. Ivanovs, “Cascadability of uniform fibre Bragg grating for 40 Gbit/s RZ-OOK to NRZ-OOK conversion,” Opt. Photon. J. 3(02), 337–341 (2013).
[Crossref]

Bougioukos, M.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

Cao, H.

Chen, G.

Chen, Z.-Y.

Chitgarha, M. R.

Dai, Y.

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Danielsen, S. L.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Daub, K.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

de Waardt, H.

Ding, Y.

Du, J.

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Eiselt, M.

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Forin, D.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Furukawa, H.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Gao, D.

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

Gnauck, A. H.

Groumas, P.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

Hansen, P. B.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Hu, S.

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

Huang, B.

Huang, D.

Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
[Crossref]

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Ip, E.

Ivanovs, G.

O. Ozolins, V. Bobrovs, and G. Ivanovs, “Cascadability of uniform fibre Bragg grating for 40 Gbit/s RZ-OOK to NRZ-OOK conversion,” Opt. Photon. J. 3(02), 337–341 (2013).
[Crossref]

Jørgensen, C.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Kahn, J. M.

Katopodis, V.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

Khaleghi, S.

Kloch, A.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Koonen, T.

Kouloumentas, C.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

Lee, J. H.

Lei, G. K.

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Leuthold, J.

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[Crossref]

Li, L.

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Liu, F.

Lu, Y.

Luo, B.

Mikkelsen, B.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Monteiro, P.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Ou, H.

Ozolins, O.

Pan, W.

Park, S.-G.

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

Peucheret, C.

Poulsen, H. N.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Qiu, M.

Shu, C.

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Shu, X.

Silveira, T.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Sotiropoulos, N.

Spiekman, L.

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

Stubkjær, K. E.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Su, Y.

Teixeira, A.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Vaa, M.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Wada, N.

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

Wang, L.

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Wei, F.

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Weisenfeld, J.

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

Willner, A. E.

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[Crossref]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[Crossref]

Wunstel, K.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

Xiang, L.

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

Xiong, M.

Yan, L.-S.

Ye, J.

Yi, A.-L.

Yilmaz, O. F.

Yu, Y.

Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
[Crossref]

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Zhang, X.

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

M. Xiong, O. Ozolins, Y. Ding, B. Huang, Y. An, H. Ou, C. Peucheret, and X. Zhang, “Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator,” Opt. Express 20(25), 27263–27272 (2012).
[Crossref] [PubMed]

Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
[Crossref]

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

Zou, B.

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

Electron. Lett. (1)

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Jørgensen, A. Kloch, P. B. Hansen, K. E. Stubkjær, K. Wunstel, and K. Daub, “40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer,” Electron. Lett. 33(2), 133–134 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (6)

L. Wang, Y. Dai, G. K. Lei, J. Du, and C. Shu, “All-optical RZ-to-NRZ and NRZ-to-PRZ format conversions based on delay-asymmetric nonlinear loop mirror,” IEEE Photon. Technol. Lett. 23(6), 368–370 (2011).
[Crossref]

Y. Yu, X. Zhang, D. Huang, L. Li, and F. Wei, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett. 19(14), 1027–1029 (2007).
[Crossref]

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett. 24(3), 179–181 (2012).
[Crossref]

S.-G. Park, L. Spiekman, M. Eiselt, and J. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[Crossref]

T. Silveira, A. Teixeira, G. T. Beleffi, D. Forin, P. Monteiro, H. Furukawa, and N. Wada, “All-optical conversion from RZ to NRZ using gain-clamped SOA,” IEEE Photon. Technol. Lett. 19(6), 357–359 (2007).
[Crossref]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (1)

Y. Yu, X. Zhang, and D. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun. 284(1), 129–135 (2011).
[Crossref]

Opt. Express (4)

Opt. Photon. J. (1)

O. Ozolins, V. Bobrovs, and G. Ivanovs, “Cascadability of uniform fibre Bragg grating for 40 Gbit/s RZ-OOK to NRZ-OOK conversion,” Opt. Photon. J. 3(02), 337–341 (2013).
[Crossref]

Proc. IEEE (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Sci. China Technol. Sc. (1)

L. Xiang, D. Gao, B. Zou, S. Hu, and X. Zhang, “Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating,” Sci. China Technol. Sc. 56(3), 558–562 (2013).
[Crossref]

Other (8)

J. Du, Y. Dai, G. K. Lei, H. Wei, and C. Shu, “RZ-to-NRZ and NRZ-to-PRZ format conversions using a photonic crystal fiber based Mach-Zehnder interferometer,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC)(IEEE, 2010), pp. 1–3.
[Crossref]

Y. Yu, Z. Xinliang, W. Lun, W. Fei, and D. Huang, “Simple and flexible NRZ-DQPSK demodulation scheme,” in Asia Communications and Photonics Conference and Exhibition (ACP, 2009), pp. 1–2.

H. Cao, J. Sun, X. Zhang, L. Xiao, and D. Huang, “Novel design methodology for superstructure fiber Bragg grating comb-filter,” Acta Phys. Sin-Ch. Ed. 53, 3077–3082 (2004).

O. Ozolins, V. Bobrovs, and G. Ivanovs, “Conversion of 40 Gbit/s RZ-OOK to NRZ-OOK with a single uniform fibre Bragg grating,” in ELMAR, 2013 55th International Symposium(IEEE, 2013), pp. 121–124.

F. Wang, E. Xu, Y. Yu, and Y. Zhang, “All-optical 40 Gbit/s data format conversion between RZ and NRZ using a fiber delay interferometer and a single SOA,” in SPIE/OSA/IEEE Asia Communications and Photonics(International Society for Optics and Photonics, 2011), pp. 83080E–1-83080E–6.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2005), pp. CTuBB2–1- CTuBB2–2.
[Crossref]

Y. Yu, X. Zhang, and D. Huang, “All-optical RZ to NRZ format conversion with tunable fiber based delay interferometer,” in Optoelectronics, 2006 Optics Valley of China International Symposium on(IEEE, 2006), pp. 47–50.
[Crossref]

W. Tang, M. Fok, and C. Shu, “20 Gb/s all-optical RZ to NRZ format conversion using frequency-doubling polarization-maintaining fiber loop mirror filter,” in Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on(IEEE, 2005), pp. 1577–1578.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Schematic diagram of the FBG-based RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion (In the case of RZ-OOK to NRZ-OOK).

Fig. 2
Fig. 2

The amplitudes of the spectra of the isolated RZ-OOK/DPSK/DQPSK pulse with 50% duty cycle (green curve), the isolated NRZ-OOK/DPSK/DQPSK pulse (blue curve), for T P =25 ps , the wavelength of the carrier λ c =1550.12 nm , and β=0.2 . The red curve is their algebraic difference (i.e. the ideal transfer function of the first-order filter).

Fig. 3
Fig. 3

Comparison the ideal transfer function with the reflectivity spectra of the nth-order FBG filters, with n=0.5, 1, 2, 2.97 and 4.

Fig. 4
Fig. 4

Variation of the Q-factor of the converted NRZ-OOK signal with filter order. The insert (a) is the standard deviations of the marks and spaces rail of the NRZ-OOK signal, and the insert (b) shows the reflectivity spectra of 2.07th-order FBG.

Fig. 5
Fig. 5

Structure and reflection spectra of the synthesized FBG filter used for 40-Gbit/s RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. (a) Synthesized index modulation (the green line) and local chirp (the blue line). (b) Simulated reflection spectra (the dotted blue line) and target reflection spectra (the solid red line).

Fig. 6
Fig. 6

Simulated waveforms, power spectra and eye diagrams of (a)-(c) the input RZ-OOK signals, (d)-(f) the corresponding output NRZ-OOK signals by the proposed filter, and (g)-(i) the corresponding output NRZ-OOK signals by DI based filter, for four different duty cycles (20%, 33%, 50% and 67%), with all the curves in the same sub-figure shifted up and down for clarity.

Fig. 7
Fig. 7

The power spectral response of the proposed 2.07th-order FBG filter (the solid green line) and the DI based filter (the solid red line), and their algebraic difference (the dotted blue line).

Fig. 8
Fig. 8

Q-factor as a function of the filter detuning for four different duty cycles (20%, 33%, 50% and 67%). Inserts (a), (b) and (c) are the simulated waveforms, power spectra and eye diagrams of the output NRZ-OOK signals with the filter detuning of 0.032nm, respectively.

Fig. 9
Fig. 9

Simulated waveforms, power spectra and eye diagrams for four different duty cycles (20%, 33%, 50% and 67%). (a)-(c) the input RZ-DPSK signals; (d)-(f) the output NRZ-DPSK signals generated by the FBG-based filter; (g)-(i) the output NRZ-DPSK signals generated by DI-based filter.

Fig. 10
Fig. 10

Simulated constellation diagrams for different duty cycles (starting from the left, columns one to four correspond to 20%, 33%, 50% and 67% duty cycles, respectively). (a)-(d) the input RZ-DPSK signals; (e)-(h) the output NRZ-DPSK signals generated by the FBG-based filter; and (i)-(l) the output NRZ-DPSK signals generated by DI based filter.

Fig. 11
Fig. 11

Simulated waveforms and eye diagrams for four different duty cycles (20%, 33%, 50% and 67%). (a)-(b) and (e)-(f) show the demodulated AMI and DB signals for the FBG-generated NRZ-DPSK, respectively; (c)-(d) and (g)-(h) are the demodulated AMI signals and DB signals for the DI-generated NRZ-DPSK, respectively.

Fig. 12
Fig. 12

Simulated waveforms, power spectra and eye diagrams for four different duty cycles (20%, 33%, 50% and 67%). (a)-(c) the input RZ-DQPSK signals; (d)-(f) the output NRZ-DQPSK signals generated by the FBG-based filter; (g)-(i) the output NRZ-DQPSK signals generated by DI-based filter.

Fig. 13
Fig. 13

Simulated constellation diagrams for different duty cycles (starting from the left, columns one to four correspond to 20%, 33%, 50% and 67% duty cycles, respectively). (a)-(d) the input RZ-DQPSK signals; (e)-(h) the output NRZ-DQPSK signals generated by the FBG-based filter; and (i)-(l) the output NRZ-DQPSK signals generated by DI-based filter.

Fig. 14
Fig. 14

Simulated waveforms and eye diagrams for four different duty cycles (20%, 33%, 50% and 67%). (a)-(b) and (e)-(f) show the I and Q components for the FBG-generated NRZ-DQPSK, respectively; (c)-(d) and (g)-(h) are the I and Q components for the DI-generated NRZ-DQPSK, respectively.

Fig. 15
Fig. 15

Measured spectra and optimal designed spectra of the fabricated FBG.

Fig. 16
Fig. 16

Experimental setup for RZ-OOK to NRZ-OOK format conversion.

Fig. 17
Fig. 17

Experimental results of RZ-OOK to NRZ-OOK format conversion. (a) Measured optical spectra; (b)-(c) and (d)-(e) are the measured waveform and eye diagrams of RZ-OOK and NRZ-OOK, respectively.

Fig. 18
Fig. 18

Measured BER and power penalty. (a) BER measurements for original RZ-OOK signal and converted NRZ-OOK signal; (b) Measured power penalty.

Fig. 19
Fig. 19

Experimental results of RZ-DPSK to NRZ-DPSK format conversion. (a) Measured optical spectra; (b)-(c) and (d)-(e) are the measured waveform and eye diagrams of RZ-DPSK and NRZ-DPSK, respectively.

Fig. 20
Fig. 20

Experimental results of RZ-DQPSK to NRZ-DQPSK format conversion. (a) Measured optical spectra; (b)-(c) and (d)-(e) are the measured waveform and eye diagrams of RZ-DQPSK and NRZ-DQPSK, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E RZ ( t )= k= + [ b k P RZ ( t ) ]δ( tk T P ) exp( j ω c t )
E out ( t )= E RZ ( t )[ h( t )exp( j ω c t ) ]
E NRZ ( t )= k= + [ b k P NRZ ( t ) ]δ( tk T P ) exp( j ω c t )
[ P RZ ( t )exp( j ω c t ) ][ h( t )exp( j ω c t ) ]= P NRZ ( t )exp( j ω c t ).
P ^ RZ ( ω ω c ) H ^ ( ω ω c )= P ^ NRZ ( ω ω c ),
H ^ dB ( ω ω c )= P ^ NRZ, dB ( ω ω c ) P ^ RZ, dB ( ω ω c ),
H ^ n th dB ( ω ω c )=n H ^ dB ( ω ω c ) n>0
P 50 (t)={ 1 E 50 sin{ π 4 [ 1+cos( 2πt T p ) ] }, | t | T p 2 0, | t |> T p 2
P NRZ (t)={ 1 E NRZ , | t |<( 1β ) T P 2 0, | t |( 1+β ) T P 2 1 2 E NRZ [ 1sin( π| t | T P 2 β T P ) ], otherwise
E 50 = + P 50 2 (t)dt ; E NRZ = + P NRZ 2 (t)dt .
H ^ 1 st dB,FBG ( ω ω c )={ max[ H ^ dB ( ω ω c ),25 ], | ω ω c | 2π T p 25, | ω ω c |> 2π T p
H ^ n th dB, FBG ( ω ω c )={ max[ n H ^ dB ( ω ω c ),25 ], | ω ω c | 2π T p 25, | ω ω c |> 2π T p n>0
R( λ )= 1 2 { 1+cos[ 2πc( 1 λ 1 λ c )Δt ] }exp{ ln( 2 ) [ 2( λ λ c ) 0.6 ] 2 }

Metrics