Abstract

Each complicated coating, in particular, a dispersive mirror consists of dozens of layers. Thin films layers have mechanical stresses. After summing up stresses from all layers, the resulting stress is high enough to bend even a relatively thick substrate. To avoid this effect we suggest depositing an antireflection coating (AR) at the back-side of the substrate which together with suppression of unwanted reflections from the back side will also compensate this stress. We demonstrate unique, extremely thick and sophisticated AR coating consisting of 71 layers with the total physical thickness of 7.5 µm. This AR coating completely compensates stress from the dispersive mirror coated on the front side and minimizes unwanted reflections.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reverse engineering of multilayer coatings for ultrafast laser applications

M. Trubetskov, T. Amotchkina, A. Tikhonravov, and V. Pervak
Appl. Opt. 53(4) A114-A120 (2014)

Post deposition annealing of IBS mixture coatings for compensation of film induced stress

Simonas Kičas, Ugnius Gimževskis, and Simas Melnikas
Opt. Mater. Express 6(7) 2236-2243 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  2. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [Crossref] [PubMed]
  3. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [Crossref]
  4. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
    [Crossref] [PubMed]
  5. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
    [Crossref] [PubMed]
  6. K. Hendrix, J. D. T. Kruschwitz, and J. Keck, “Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter,” Appl. Opt. 53(4), A360–A376 (2014).
    [Crossref] [PubMed]
  7. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
    [Crossref] [PubMed]
  8. T. Amotchkina, A. Tikhonravov, and M. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” in N. Kaiser, M. Lequime, and H. A. Macleod, eds. (2008), pp. 710104–710104–11.
  9. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47(17), 3109–3113 (2008).
    [Crossref] [PubMed]
  10. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
    [Crossref] [PubMed]
  11. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  12. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  13. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
    [Crossref] [PubMed]
  14. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
    [Crossref] [PubMed]
  15. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [Crossref] [PubMed]

2014 (1)

2011 (2)

2009 (2)

2008 (3)

2007 (2)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

2006 (2)

1996 (1)

Amotchkina, T. V.

Apolonski, A.

DeBell, G. W.

Dobrowolski, J. A.

Ehlers, H.

Gross, T.

Grupe, D.

Hendrix, K.

Keck, J.

Krausz, F.

F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Kruschwitz, J. D. T.

Lappschies, M.

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Pervak, V.

Ristau, D.

Steinmeyer, G.

Sugita, A.

Sullivan, B. T.

Teisset, C.

Tikhonravov, A. V.

Trubetskov, M. K.

Verly, P. G.

Appl. Opt. (10)

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
[Crossref] [PubMed]

G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
[Crossref] [PubMed]

K. Hendrix, J. D. T. Kruschwitz, and J. Keck, “Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter,” Appl. Opt. 53(4), A360–A376 (2014).
[Crossref] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[Crossref] [PubMed]

T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47(17), 3109–3113 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[Crossref] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Opt. Express (1)

Rev. Mod. Phys. (1)

F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Other (2)

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

T. Amotchkina, A. Tikhonravov, and M. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” in N. Kaiser, M. Lequime, and H. A. Macleod, eds. (2008), pp. 710104–710104–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical reflectance (a) and GDD (b) of 74-layers DM design (black curves). Green lines indicate target values.

Fig. 2
Fig. 2

Evolution of residual reflectance (a), number of layers (b), total physical thickness (c), total optical thickness (d) on the number of clusters M.

Fig. 3
Fig. 3

Reflectance of 106-layer optimal AR design and 71-layer modified AR design.

Fig. 4
Fig. 4

Comparison of theoretical and experimental BBM transmittance data related to AR-B260 sample.

Fig. 5
Fig. 5

Comparison of theoretical and experimental spectral characteristics of DM-AR-Suprasil sample: transmittance (a) and GD (b).

Tables (1)

Tables Icon

Table 1 Cauchy parameters of thin-film materials and substrate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n( λ )= A 0 + A 1 ( λ 0 /λ ) 2 + A 2 ( λ 0 /λ ) 4 ,
T c = λ u 2 [ 1+ 2 π arcsin( n H / n L 1 n H / n L +1 ) ]= 1030nm 2 [ 1+ 2 π arcsin( 2.25/1.461 2.25/1.46+1 ) ]585nm
N cl =2( [ 2 T c λ l ]+1 )=2( [ 1170 560 ]+1 )6
R av = 1 λ u λ l λ l λ u R( λ )dλ

Metrics