Abstract

We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref] [PubMed]
  2. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751 (Springer, 2008).
  3. S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
    [Crossref]
  4. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
    [Crossref]
  5. L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).
  6. S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
    [Crossref] [PubMed]
  7. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
    [Crossref] [PubMed]
  8. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623 (1996).
    [Crossref] [PubMed]
  9. T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
    [Crossref]
  10. E. Averlant, M. Tlidi, H. Thienpont, T. Ackemann, and K. Panajotov, “Experimental observation of localized structures in medium size VCSELs,” Opt. Express 22, 762 (2014).
    [Crossref] [PubMed]
  11. F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
    [Crossref]
  12. X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
    [Crossref]
  13. L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
    [Crossref] [PubMed]
  14. L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons,” Opt. Express 22, 6934–6947 (2014).
    [Crossref] [PubMed]
  15. E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963 (2000).
    [Crossref]
  16. E. DelRe, B. Crosignani, E. Palange, and A.J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188 (2002).
    [Crossref]
  17. E. DelRe and M. Segev, “Self-focusing and solitons in photorefractive media,” Top. Appl. Phys. 114, 547 (2009).
    [Crossref]
  18. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 931–933 (1996).
    [Crossref] [PubMed]
  19. J. Petter, J. Schroder, D. Trager, and C. Denz, “Optical control of arrays of photorefractive screening solitons,” Opt. Lett. 28, 438 (2003).
    [Crossref] [PubMed]
  20. N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353 (2009).
    [Crossref] [PubMed]
  21. A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
    [Crossref]
  22. M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519 (2005).
    [Crossref] [PubMed]
  23. E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
    [Crossref]
  24. A. Pierangelo, A. Ciattoni, E. Palange, A.J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659 (2009).
    [Crossref]
  25. E. DelRe, A. Pierangelo, J. Parravicini, S. Gentilini, and A.J. Agranat, “Funnel-based biomimetics volume optics,” Opt. Express 20, 16631 (2012).
    [Crossref]
  26. M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
    [Crossref]
  27. W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
    [Crossref]
  28. E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
    [Crossref]
  29. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
    [Crossref]
  30. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
    [Crossref]
  31. E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323 (2006).
    [Crossref]
  32. X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
    [Crossref]
  33. A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: K1−yLy T1−xNx,” Opt. Lett. 17, 713 (1992).
    [Crossref] [PubMed]
  34. R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs”, in Vertical-Cavity Surface-Emitting Laser Devices. Springer Series in Photonics6, 53–98 (Springer, 2003).
    [Crossref]

2014 (2)

2013 (1)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
[Crossref]

2009 (3)

2008 (1)

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

2007 (1)

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

2006 (2)

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323 (2006).
[Crossref]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

2005 (3)

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519 (2005).
[Crossref] [PubMed]

E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
[Crossref]

2004 (3)

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

2003 (1)

2002 (2)

E. DelRe, B. Crosignani, E. Palange, and A.J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188 (2002).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

2000 (2)

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963 (2000).
[Crossref]

1998 (2)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

1996 (3)

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623 (1996).
[Crossref] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 931–933 (1996).
[Crossref] [PubMed]

1995 (1)

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
[Crossref]

1992 (1)

Ackemann, T.

Agranat, A.

Agranat, A. J.

N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353 (2009).
[Crossref] [PubMed]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963 (2000).
[Crossref]

Agranat, A.J.

Akhmediev, N.

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751 (Springer, 2008).

Ankiewicz, A.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751 (Springer, 2008).

Asaro, M.

Averlant, E.

Balle, S.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

Barbay, S.

S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
[Crossref]

Barland, S.

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Brambilla, M.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons,” Opt. Express 22, 6934–6947 (2014).
[Crossref] [PubMed]

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[Crossref] [PubMed]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Carvalho, M. I.

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
[Crossref]

Chen, Z. G.

Christodoulides, D. N.

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
[Crossref]

Ciattoni, A.

A. Pierangelo, A. Ciattoni, E. Palange, A.J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659 (2009).
[Crossref]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

Columbo, L.

Cronin-Golomb, M.

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

Crosignani, B.

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, B. Crosignani, E. Palange, and A.J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188 (2002).
[Crossref]

D’Ercole, A.

E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

De Masi, G.

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

DelRe, E.

E. DelRe, A. Pierangelo, J. Parravicini, S. Gentilini, and A.J. Agranat, “Funnel-based biomimetics volume optics,” Opt. Express 20, 16631 (2012).
[Crossref]

A. Pierangelo, A. Ciattoni, E. Palange, A.J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659 (2009).
[Crossref]

E. DelRe and M. Segev, “Self-focusing and solitons in photorefractive media,” Top. Appl. Phys. 114, 547 (2009).
[Crossref]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323 (2006).
[Crossref]

E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, B. Crosignani, E. Palange, and A.J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188 (2002).
[Crossref]

E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963 (2000).
[Crossref]

Denz, C.

Ebeling, K. J.

R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs”, in Vertical-Cavity Surface-Emitting Laser Devices. Springer Series in Photonics6, 53–98 (Springer, 2003).
[Crossref]

Firth, W. J.

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623 (1996).
[Crossref] [PubMed]

Fressengeas, N.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

Furfaro, L.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

Genevet, P.

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

Gentilini, S.

Giudici, M.

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Hachair, X.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Harkness, G. K.

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Hofmeister, R.

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Jäger, R.

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

Javaloyes, J.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

Knödl, T

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

Krolikowski, W.

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

Kugel, G.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

Kuszelewicz, R.

S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
[Crossref]

Lugiato, L.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

Lugiato, L. A.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

Lugiato, L.A.

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Luther-Davies, B.

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

Maggipinto, T.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

Maufoy, J.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

Michalzik, R.

R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs”, in Vertical-Cavity Surface-Emitting Laser Devices. Springer Series in Photonics6, 53–98 (Springer, 2003).
[Crossref]

Miller, M.

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

Moerner, W. E.

Ostroverkhova, O.

Palange, E.

A. Pierangelo, A. Ciattoni, E. Palange, A.J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659 (2009).
[Crossref]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323 (2006).
[Crossref]

E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, B. Crosignani, E. Palange, and A.J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188 (2002).
[Crossref]

Panajotov, K.

Parravicini, J.

Pedaci, F.

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

Perrini, I.M.

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

Petter, J.

Pierangelo, A.

Prati, F.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons,” Opt. Express 22, 6934–6947 (2014).
[Crossref] [PubMed]

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Rizza, C.

Salamo, G.

Sapiens, N.

Schroder, J.

Scroggie, A. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623 (1996).
[Crossref] [PubMed]

Segev, M.

Sheldon, M.

Shih, M. F.

Singh, S. R.

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
[Crossref]

Spinelli, L.

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

Tamburrini, M.

Thienpont, H.

Tissoni, G.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons,” Opt. Express 22, 6934–6947 (2014).
[Crossref] [PubMed]

L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[Crossref] [PubMed]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Tlidi, M.

Trager, D.

Tredicce, J.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

Tredicce, J. R.

S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
[Crossref]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

Tredicce, J.R.

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

Weissbrod, A.

Wolfersberger, D.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

Yariv, A.

Adv. Opt. Technol. (1)

S. Barbay, R. Kuszelewicz, and J. R. Tredicce, “Cavity solitons in VCSEL devices,” Adv. Opt. Technol. 2011, 628761 (2011).
[Crossref]

Appl. Phys. Lett. (4)

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J.R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A. J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl. Phys. Lett. 85, 2679 (2004).
[Crossref]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699 (2002).
[Crossref] [PubMed]

Opt. Commun. (2)

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145, 393 (1998).
[Crossref]

M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

Phys. Rev. A (3)

X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J.R. Tredicce, M. Brambilla, T. Maggipinto, I.M. Perrini, G. Tissoni, and L. Lugiato, “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Phys. Rev. A 69, 043817 (2004).
[Crossref]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, and T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542 (1998).
[Crossref]

Phys. Rev. E (3)

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726 (2000).
[Crossref]

W. Krolikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, “Self-bending photorefractive solitons,” Phys. Rev. E 54, 5761 (1996).
[Crossref]

E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005).
[Crossref]

Phys. Rev. Lett. (3)

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[Crossref] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623 (1996).
[Crossref] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

E. DelRe and M. Segev, “Self-focusing and solitons in photorefractive media,” Top. Appl. Phys. 114, 547 (2009).
[Crossref]

Other (3)

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751 (Springer, 2008).

L.A. Lugiato, F. Prati, G. Tissoni, M. Brambilla, S. Barland, M. Giudici, and J.R. Tredicce, “Cavity Solitons in Semiconductor Devices,” in Dissipative Solitons: from Optics to Biology and Medicine. Lecture Notes in Physics751, 1–42 (Springer, 2008).

R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs”, in Vertical-Cavity Surface-Emitting Laser Devices. Springer Series in Photonics6, 53–98 (Springer, 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of a VCSEL “blackboard” - electro-optic switch assembly.

Fig. 2
Fig. 2

Detailed scheme of experimental setup. VL: visible-wavelength (λ =532 nm) cw laser. T1, T2, T3, T4: adjustable optical beam-expanders. WP1, WP2, WP3, WP4: λ/2 waveplates. P: polarizer. BS1, BS2, BS3, BS4, BS5, BS6: beam-splitters. LD: infrared laser diode. C1, C2: collimators. TEC: Tunable external cavity in Littman-Metcalf configuration. Ins: optical insulator. L1, L2, L3: lenses. VODF: variable optical density filter. M: mirrors. DM: dichroic mirrors. PH: iris. PRC: electrically-driven photorefractive crystal. VCSEL: broad-area VCSEL cavity. F: neutral density filters. CCD1, CCD2: CCD cameras. PM: power meter. SA: spectrum analyzer. FB: focused beam (λ =532 nm). VBB: longitudinally-broad visible background beam (λ =532 nm). BB: longitudinally broad infrared (λ =977 nm) background beam. EB: focused near-infrared (λ =977 nm) exciting beam.

Fig. 3
Fig. 3

(a) Intensity distribution of the VCSEL emission (kept below threshold) with intensity profiles in x (b) and y (c) directions. (d) 3D emission profile of the VCSEL. (e) typical spectrum of the VCSEL below-threshold (FWHM≃18.3 nm) and (f) current-power characteristic curve: saturation effects below-threshold occur due to thermal rollover, as is typical in continuous-current-supplied broad-area VCSELs [34]. Shaded region in (f) indicates the range where localized structures are observed.

Fig. 4
Fig. 4

IR (λ = 977 nm) intensity distribution of the beam at the input facet (a) and output facet (b) (after 2.7 mm of standard linear propagation) of the crystal. Electro-driven guiding of the IR beam in a double-funnel waveguide previously written through a visible-light laser beam (λ = 532 nm): intensity distribution at the output facet of the crystal for an applied voltage of −1 kV (c) (note the antiguiding central region and the guiding lateral lobes), 0 V (d) and +1 kV (e) (with the central guiding region fully activated). The central circle in (c), (d), (e) indicates the region, selected by the iris, which is imaged in the plane of the VCSEL.

Fig. 5
Fig. 5

(a), (b), (c), (d), (e), (f), (g): VCSEL emission intensity pattern in xy plane (right) and relative intensity profiles centered in the dashed cross (left); blue crosses are centered in EB spot, while green crosses are centered in excited localized spot. (a), (b), (c), (d): emission at exciting spot EB intensities for respectively ΔV = −1, −0.6, +0.2, +0.8 kV applied voltage on the crystal (intensity profiles are centered at EB spot); (e), (f), (g): VCSEL emission after the structure switches on (intensity profiles are centered in excited localized structure) for ΔV = +1, 0, −1 kV. For comparison, we indicate in (h) the position of the EB spot (green circle) and that of the localized structure (blue circle), along with the region in which activation occurs (dashed circle) relative to the transverse intensity profile of the VCSEL (without no injected beams, as in Fig. 3(a)).

Fig. 6
Fig. 6

Spectrum of VCSEL emission (below threshold, Fig. 3(e)) with superimposed spectrum of injected beams (FWHM≃ 0.43 nm) from the diode laser (LD) in experimental conditions.

Metrics