Abstract

A novel heterojunction ultraviolet (UV) photodetector of assembling Ag nanoparticles (NPs) onto ZnO nanowire (NW) arrays was fabricated via combination of chemical vapor deposition and thermal evaporation route. The fabricated composite Ag@ZnO NW arrays show blue-shift of UV peaks, suppression of the visible peaks, and obvious enhancements in absorption from ultraviolet to infrared region and photoluminescence (PL) emission at room-temperature. These phenomena are attributed to the Localized Surface Plasmon Resonance (LSPR) effect. Benefiting from absorption enhancement and surface heterojunctions, Ag@ZnO heterostructures show a photocurrent increment by 117%, a short response time of 80 ms and a recovery time of 3.27 s under 365 nm UV illumination of 0.24 mW/cm2. This research presented a simple route to obtain high performance UV photodetectors and would be of some benefit in optical-electron devices manufacture.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strain-enhanced cable-type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction

Jixun Chen, Longwei Ding, Xianghui Zhang, Liang Chu, Nishuang Liu, and Yihua Gao
Opt. Express 22(3) 3661-3668 (2014)

ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications

Peng Wang, Xinhong Zhao, and Baojun Li
Opt. Express 19(12) 11271-11279 (2011)

Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [Crossref]
  2. Y. H. Gao and Y. Bando, “Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice,” Nature 415(6872), 599 (2002).
  3. X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
    [Crossref] [PubMed]
  4. X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
    [Crossref] [PubMed]
  5. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
    [Crossref]
  6. A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
    [Crossref]
  7. X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
    [Crossref]
  8. M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
    [Crossref] [PubMed]
  9. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
    [Crossref] [PubMed]
  10. P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
    [Crossref] [PubMed]
  11. X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
    [Crossref] [PubMed]
  12. H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
    [Crossref]
  13. C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
    [Crossref]
  14. J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
    [Crossref] [PubMed]
  15. Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
    [Crossref] [PubMed]
  16. K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
    [Crossref] [PubMed]
  17. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
    [Crossref] [PubMed]
  18. N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
    [Crossref] [PubMed]
  19. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
    [Crossref]
  20. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
    [Crossref]
  21. J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
    [Crossref]
  22. J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
    [Crossref] [PubMed]
  23. S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
    [Crossref]
  24. L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
    [Crossref] [PubMed]
  25. X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
    [Crossref]
  26. B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
    [Crossref]
  27. S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
    [Crossref] [PubMed]
  28. M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
    [Crossref]
  29. Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
    [Crossref] [PubMed]
  30. N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
    [Crossref] [PubMed]
  31. C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
    [Crossref] [PubMed]
  32. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
    [Crossref] [PubMed]
  33. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  34. Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
    [Crossref] [PubMed]

2014 (2)

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

2013 (5)

S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
[Crossref] [PubMed]

L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
[Crossref] [PubMed]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
[Crossref] [PubMed]

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

2012 (8)

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
[Crossref] [PubMed]

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

2011 (3)

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

2010 (6)

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
[Crossref] [PubMed]

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

2009 (3)

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
[Crossref] [PubMed]

2008 (1)

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

2007 (2)

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

2006 (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[Crossref]

2002 (2)

Y. H. Gao and Y. Bando, “Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice,” Nature 415(6872), 599 (2002).

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Afsal, M.

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

Andrews, S. C.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Aono, M.

K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
[Crossref] [PubMed]

Bai, S.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Bai, X.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Bando, Y.

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Y. H. Gao and Y. Bando, “Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice,” Nature 415(6872), 599 (2002).

Bao, G.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Bao, X. Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Bayerl, D. J.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Bi, Y.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Briscoe, J.

S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
[Crossref] [PubMed]

Cao, Y. Z.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Cha, S. N.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Chantarat, N.

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

Chen, C. Y.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Chen, J.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Chen, J. A.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Chen, L. J.

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

Chen, S. Y.

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

Chen, X.

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Chen, Y. W.

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

Chen, Z.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Cheng, B.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Chou, L. J.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Chu, L. W.

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

Cui, N.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Deng, S. Z.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Deng, Y.

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Ding, Y.

P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
[Crossref] [PubMed]

Djurišic, A. B.

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Dong, Q.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Dunn, S.

S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
[Crossref] [PubMed]

Fang, G.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Fang, G. J.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Fang, X.

L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
[Crossref] [PubMed]

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Fu, A.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gao, H.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gao, P. X.

P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
[Crossref] [PubMed]

Gao, Y.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Gao, Y. H.

N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
[Crossref] [PubMed]

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Y. H. Gao and Y. Bando, “Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice,” Nature 415(6872), 599 (2002).

Golberg, D.

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Gong, L.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Gu, Y.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Guo, F.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Han, J.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Han, X. Y.

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

Hatch, S. M.

S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
[Crossref] [PubMed]

He, J.

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Hu, L.

L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
[Crossref] [PubMed]

Hu, X. J.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Huang, H.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Huang, J.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Huang, Y.

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Kim, H.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Kim, J. M.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Kind, H.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Kuang, Q.

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Lao, C. S.

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Law, J. B. K.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[Crossref]

Law, M.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Lee, M.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Lei, S.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Leung, Y. H.

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Li, C.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Li, G.

X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
[Crossref] [PubMed]

Li, G. H.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Li, J.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Li, L.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Li, S.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Li, Z.

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

Liao, L.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Lin, C. C.

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

Liu, K.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
[Crossref] [PubMed]

Liu, N.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Liu, N. H.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Liu, N. S.

Liu, Y.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

Lo, Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Long, H.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Lu, X.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Mai, W.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Man Ching Ng, A.

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Messer, B.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Mo, X.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Muhammad, S.

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Ouyang, H.

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

Ouyang, Z.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Park, M. C.

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Park, Y. J.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
[Crossref] [PubMed]

Polla, D. L.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Qin, Y.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Ren, X.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Sakurai, M.

K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

She, J. C.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Shen, Y.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Shi, Y.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Soci, C.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Sood, A. K.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Su, F. H.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Su, J.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
[Crossref] [PubMed]

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

Su, X.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Sun, W. M.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Tang, X.

X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
[Crossref] [PubMed]

Thong, J. T. L.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[Crossref]

Tian, W. W.

Tong, Y.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Wang, C. Y.

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

Wang, D.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Wang, H.

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

Wang, S.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Wang, X.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Wang, Y.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Wang, Z. L.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
[Crossref] [PubMed]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Wei, M.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Wei, T. Y.

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

Wu, W.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Wu, X. G.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Xiao, X.

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Xiao, Y.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Xiao, Z.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Xiao, Z. M.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Xu, J.

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

Xu, N. S.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Xu, S.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Xu, Z.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Yan, H. Q.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Yang, B.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Yang, G. W.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Yang, P.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Yang, P. D.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

Yang, Q.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

Yang, Y. H.

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Yang, Z.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

Yeh, P. H.

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Yuan, L.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Yuan, Y.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

Zhan, X.

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Zhang, A.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Zhang, Q.

N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
[Crossref] [PubMed]

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

Zhang, X.

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

Zhang, X. H.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

N. S. Liu, W. W. Tian, X. H. Zhang, J. Su, Q. Zhang, and Y. H. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
[Crossref] [PubMed]

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

Zhao, X. Z.

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Zhou, J.

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Zhou, S.

X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
[Crossref] [PubMed]

ACS Nano (1)

J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, and N. S. Xu, “Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures,” ACS Nano 2(10), 2015–2022 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Adv. Funct. Mater. 20(24), 4233–4248 (2010).
[Crossref]

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater. 21(23), 4464–4469 (2011).
[Crossref]

Adv. Mater. (7)

L. Peng, L. Hu, and X. Fang, “Low-dimensional nanostructure ultraviolet photodetectors,” Adv. Mater. 25(37), 5321–5328 (2013).
[Crossref] [PubMed]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002).
[Crossref]

S. M. Hatch, J. Briscoe, and S. Dunn, “A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response,” Adv. Mater. 25(6), 867–871 (2013).
[Crossref] [PubMed]

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater. 22(30), 3327–3332 (2010).
[Crossref] [PubMed]

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. 24(11), 1410–1417 (2012).
[Crossref] [PubMed]

X. H. Zhang, L. Gong, K. Liu, Y. Z. Cao, X. Xiao, W. M. Sun, X. J. Hu, Y. H. Gao, J. A. Chen, J. Zhou, and Z. L. Wang, “Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode,” Adv. Mater. 22(46), 5292–5296 (2010).
[Crossref] [PubMed]

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, and G. Fang, “Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes,” Appl. Phys. Lett. 103(12), 123504 (2013).
[Crossref]

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[Crossref]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process. 107(2), 255–260 (2012).
[Crossref]

Chem. Commun. (Camb.) (1)

X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, “Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis,” Chem. Commun. (Camb.) 47(20), 5804–5806 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

J. Mater. Chem. (2)

M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, “Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO2 core–shell nanowires,” J. Mater. Chem. 22(17), 8420–8425 (2012).
[Crossref]

A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

J. Mater. Chem. C (1)

B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao, and S. Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C 2(10), 1808–1814 (2014).
[Crossref]

J. Nanosci. Nanotechnol. (1)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

C. Li, G. J. Fang, N. H. Liu, J. Li, L. Liao, F. H. Su, G. H. Li, X. G. Wu, and X. Z. Zhao, “Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays,” J. Phys. Chem. C 111(34), 12566–12571 (2007).
[Crossref]

Laser Photon. Rev. (1)

X. H. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photon. Rev. 8(3), 429–435 (2014).
[Crossref]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Nano Lett. (2)

P. X. Gao, Y. Ding, and Z. L. Wang, “Electronic Transport in Superlattice-Structured ZnO Nanohelix,” Nano Lett. 9(1), 137–143 (2009).
[Crossref] [PubMed]

X. Tang, G. Li, and S. Zhou, “Ultraviolet Electroluminescence of Light-Emitting Diodes Based on Single n-ZnO/p-AlGaN Heterojunction Nanowires,” Nano Lett. 13(11), 5046–5050 (2013).
[Crossref] [PubMed]

Nano Res. (1)

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Nanoscale (1)

Z. Wang, X. Zhan, Y. Wang, S. Muhammad, Y. Huang, and J. He, “A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures,” Nanoscale 4(8), 2678–2684 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology 20(39), 395201 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Nature (1)

Y. H. Gao and Y. Bando, “Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice,” Nature 415(6872), 599 (2002).

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors (Basel) 10(9), 8604–8634 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Morphology characterization of as-prepared Ag@ZnO NW arrays. (a) Low-magnification and (b) high-magnification SEM images of ZnO nanowire arrays grown on GaN thin film before Ag NPs coating. (c) Low-magnification and (d) high-magnification SEM image of after 10 nm Ag NPs coated on ZnO NW arrays. (e) low-magnification TEM image of Ag@ZnO NW with the composition shown by EDS spectrum in the inset. (f) High-resolution TEM image illustrates clearly a 10 nm Ag nanoparticle attaching to the surface of ZnO NW.

Fig. 2
Fig. 2

Optical properties measurement. (a) Photo reflectivity spectra of Ag@ZnO NW arrays (sample D). For compare, GaN thin films/10 nm Ag (sample A), random oriented ZnO NW thin films (sample B) and pure ZnO NW arrays (sample C) were introduced. Inset shows the digital images of four samples, respectively. (b) Absorption spectra of sample A, B, C and D. Peak located at 364 nm was from the intrinsic absorption of GaN thin film. Peaks at 383 nm and 573 nm correspond to the intrinsic absorption and crystal-defect absorption of ZnO, respectively. The peak of Ag@ZnO at 490 nm was attributed to the surface plasmons absorption. (c) Surface-Enhanced Raman Scattering of Ag NPs loaded ZnO NWs arrays. (d) Room temperature PL spectra form ZnO NW arrays and after Ag NPs coated, excited by 325 nm UV laser.

Fig. 3
Fig. 3

(a) the schematic diagrams of the Ag NPs/ZnO NW arrays photodetector. (b) I-V characteristics of the photodetectors with and without UV LED (365 nm, 0.24 mW/cm2) shed from the top side. (c) Time-dependent photocurrent response under UV light at 5 V bias. (d) High speed photocurrent transient performance of devices under UV LED illumination with on/off shift at 100 Hz high frequency.

Fig. 4
Fig. 4

Energy band structure and photocurrent response process schematic diagram of Ag@ZnO NW arrays UV photodetector. (a) Energy band structure of Ag@ZnO heterojunction. (b) LPSR excited electrons transfer from Ag NPs to ZnO NWs. (c-d) UV photocurrent response process in ZnO NW photodetector and Ag NPs@ZnO NW LSPR photodetector.

Metrics