Abstract

The performance of digital backpropagation (DBP) equalization when applied over multiple channels to compensate for the nonlinear impairments in optical fiber transmission systems is investigated. The impact of a suboptimal multichannel DBP operation is evaluated, where implementation complexity is reduced by varying parameters such as the number of nonlinear steps per span and sampling rate. Results have been obtained for a reference system consisting of a 5×32 Gbaud PDM-16QAM superchannel with 33 GHz subchannel spacing and Nyquist pulse shaping under long-haul transmission. The reduction in the effectiveness of the algorithm is evaluated and compared with the ideal gain expected from the cancellation of the nonlinear signal distortion. The detrimental effects of polarization mode dispersion (PMD) with varying DBP bandwidth are also studied. Key parameters which ensure the effectiveness of multichannel DBP are identified.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low complexity digital backpropagation for high baud subcarrier-multiplexing systems

Fangyuan Zhang, Qunbi Zhuge, Meng Qiu, and David V. Plant
Opt. Express 24(15) 17027-17040 (2016)

Low complexity split digital backpropagation for digital subcarrier-multiplexing optical transmissions

Zhuopeng Xiao, Qunbi Zhuge, Songnian Fu, Fangyuan Zhang, Meng Qiu, Ming Tang, Deming Liu, and David V. Plant
Opt. Express 25(22) 27824-27833 (2017)

Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission

Xiaojun Liang, Shiva Kumar, and Jing Shao
Opt. Express 21(23) 28668-28675 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
    [Crossref]
  2. I. B. Djordjevic, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw. 1(6), 555–564 (2009).
    [Crossref]
  3. I. B. Djordjevic, “Advanced coded modulation for ultra-high speed optical transmission,” in Tech. Digest of Optical Fiber Communications, 2014, paper W3J.4.
  4. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  5. E. M. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation”, J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  6. E. M. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
    [Crossref]
  7. D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
    [Crossref]
  8. S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications, Chapter 8, (Kluwer Academic, 1999).
  9. D. Rafique and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
    [Crossref] [PubMed]
  10. D. Rafique and A. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [Crossref] [PubMed]
  11. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
    [Crossref] [PubMed]
  12. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 2(5), 816–832 (2010).
    [Crossref]
  13. T. Tanimura, M. Nolle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensator with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
    [Crossref] [PubMed]
  14. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications: Systems and Networks, Vol. VIB, Chapter 5, (Academic Press, 2013).
  15. R. Asif, C.-Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18(22), 22796–22807 (2011).
    [Crossref]
  16. C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.
  17. R. Rath, J. Leibrich, and W. Rosenkranz, “On the optimization of link design using nonlinear equalization for 100 Gb/s 16QAM transmission,” in Tech. Digest of European Conference on Optical Communications, 2012, paper P3.10.
  18. E. F. Mateo, L. Zhou, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
    [Crossref] [PubMed]
  19. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express 19(2), 570–583 (2011).
    [Crossref] [PubMed]
  20. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
    [Crossref] [PubMed]
  21. E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).
  22. E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.
  23. N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.
  24. G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.
  25. T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.
  26. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-Model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]

2014 (1)

2012 (2)

2011 (4)

2010 (5)

E. M. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
[Crossref]

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[Crossref]

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
[Crossref] [PubMed]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 2(5), 816–832 (2010).
[Crossref]

2009 (2)

2008 (2)

Aono, Y.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Arabaci, M.

Asif, R.

Bayvel, P.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

Behrens, C.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Benedetto, S.

S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications, Chapter 8, (Kluwer Academic, 1999).

Biglieri, E.

S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications, Chapter 8, (Kluwer Academic, 1999).

Bohn, M.

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Bosco, G.

Carena, A.

Chandrasekhar, S.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Chen, X.

Curri, V.

Delbue, R.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Djordjevic, I. B.

Ellis, A.

Elschner, R.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Fischer, J. K.

Fontaine, N. K.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Forghieri, F.

Galdino, L.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

Gao, G.

Hellerbrand, S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Holtmannspoetter, M.

Huang, Y. K.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

Ip, E.

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[Crossref]

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Ip, E. M.

Jiang, Y.

Kahn, J. M.

Kaminow, I. P.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications: Systems and Networks, Vol. VIB, Chapter 5, (Academic Press, 2013).

Kato, T.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Killey, R.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

Killey, R. I.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Kuschnerov, M.

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Leibrich, J.

R. Rath, J. Leibrich, and W. Rosenkranz, “On the optimization of link design using nonlinear equalization for 100 Gb/s 16QAM transmission,” in Tech. Digest of European Conference on Optical Communications, 2012, paper P3.10.

Li, G.

Li, T.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications: Systems and Networks, Vol. VIB, Chapter 5, (Academic Press, 2013).

Liga, G.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

Lin, C.-Y.

R. Asif, C.-Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18(22), 22796–22807 (2011).
[Crossref]

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Lingle, R.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

Liu, X.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Makovejis, S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Mateo, E.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Mateo, E. F.

Millar, D. S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Minkov, L. L.

Napoli, A.

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Nolle, M.

Oda, S.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Okabe, R.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Peckham, D.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

Poggiolini, P.

Pupalakis, P.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Rafique, D.

Randel, S.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Rasmussen, J. C.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Rath, R.

R. Rath, J. Leibrich, and W. Rosenkranz, “On the optimization of link design using nonlinear equalization for 100 Gb/s 16QAM transmission,” in Tech. Digest of European Conference on Optical Communications, 2012, paper P3.10.

Richter, T.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Rosenkranz, W.

R. Rath, J. Leibrich, and W. Rosenkranz, “On the optimization of link design using nonlinear equalization for 100 Gb/s 16QAM transmission,” in Tech. Digest of European Conference on Optical Communications, 2012, paper P3.10.

Ryf, R.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Savory, S. J.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Schmauss, B.

R. Asif, C.-Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18(22), 22796–22807 (2011).
[Crossref]

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Schmidt-Langhorst, C.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Schubert, C.

T. Tanimura, M. Nolle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensator with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
[Crossref] [PubMed]

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Shao, Y.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

Shieh, W.

Sleiffer, V.A.J

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Spinnler, B.

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

Sureka, A.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Tajima, T.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Tanimura, T.

T. Tanimura, M. Nolle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensator with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
[Crossref] [PubMed]

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Wang, T.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Watanabe, S.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

Willner, A. E.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications: Systems and Networks, Vol. VIB, Chapter 5, (Academic Press, 2013).

Winzer, P.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

Xu, T.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 2(5), 816–832 (2010).
[Crossref]

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
[Crossref] [PubMed]

Yano, Y.

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

Zhou, L.

Zhou, X.

Zhu, B.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

IEEE Photonics Journal (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 2(5), 816–832 (2010).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Select. Topics Quant. Electr. (1)

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” J. Select. Topics Quant. Electr. 16(5), 1217–1226 (2010).
[Crossref]

Opt. Express (8)

D. Rafique and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
[Crossref] [PubMed]

D. Rafique and A. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
[Crossref] [PubMed]

E. F. Mateo, L. Zhou, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
[Crossref] [PubMed]

E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express 19(2), 570–583 (2011).
[Crossref] [PubMed]

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
[Crossref] [PubMed]

T. Tanimura, M. Nolle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensator with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
[Crossref] [PubMed]

R. Asif, C.-Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18(22), 22796–22807 (2011).
[Crossref]

Other (10)

C.-Y. Lin, A. Napoli, M. Kuschnerov, B. Spinnler, M. Bohn, D. Rafique, V.A.J Sleiffer, and B. Schmauss, “Adaptive digital back-propagation for optical communication systems,” in Tech. Digest of Optical Fiber Communications, 2014, paper M3C.4.

R. Rath, J. Leibrich, and W. Rosenkranz, “On the optimization of link design using nonlinear equalization for 100 Gb/s 16QAM transmission,” in Tech. Digest of European Conference on Optical Communications, 2012, paper P3.10.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications: Systems and Networks, Vol. VIB, Chapter 5, (Academic Press, 2013).

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society 24th Annual Meeting, WEE3 (2011).

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ × 114 Gb/s DP-8QAM using three synchronized sampling scopes,” in Tech. Digest of Optical Fiber Communications, 2012, paper OM3A.6.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalakis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2 Tb/s superchannel using a full-field spectrally-sliced receiver,” in Tech. Digest of European Conference on Optical Communications, 2013, paper Mo.3.D.5.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral efficiency Terabit/s superchannels,” in Tech. Digest of Optical Fiber Communications, 2014, paper W2A.23.

T. Tanimura, T. Kato, R. Okabe, S. Oda, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, J. C. Rasmussen, and S. Watanabe, “Coherent reception and 126 GHz bandwidth digital signal processing of CO-OFDM superchannel generated by fiber frequency conversion,” in Tech. Digest of Optical Fiber Communications, 2014, paper Tu3A.1.

I. B. Djordjevic, “Advanced coded modulation for ultra-high speed optical transmission,” in Tech. Digest of Optical Fiber Communications, 2014, paper W3J.4.

S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications, Chapter 8, (Kluwer Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Simulation schematic of 5×32 Gbaud Dual-Polarization (DP)-16QAM superchannel transmission with two different DSP schemes: (a) with full sampling rate DBP and (b) with limited sampling rate.
Fig. 2
Fig. 2 Q2 factor vs. launch power per channel after 3206.8 km transmission with varying backpropagated bandwidth around the central channel. Continuous lines fit obtained results represented by markers.
Fig. 3
Fig. 3 Q2 factor gain versus number of steps per span after 3206.8 km transmission with varying backpropagated bandwidth around the central channel and γBP optimized for each value of the number of steps.
Fig. 4
Fig. 4 Q2 factor optimization in number of steps per span and DBP nonlinear parameter γBP for (a) single channel case, (b) 3 channels and (c) full-field DBP. Labels indicate the Q2 factor penalty in dB compared to the maximum value achieved operating DBP at 160 steps/span and γBP=1.2 W−1km−1.
Fig. 5
Fig. 5 Superchannel spectrum digitised at frequency Fs equal to (a) the Nyquist rate (sampling rate equal to signal bandwidth) and (b) twice the Nyquist rate.
Fig. 6
Fig. 6 Q2 factor gain with respect to EDC-only system versus sampling rate for different backpropagated bandwidths.
Fig. 7
Fig. 7 Q2 factor gain with respect to EDC-only system versus PMD parameter, for varying backpropagated bandwidth. Error bars signify the standard deviation of the obtained values.

Tables (1)

Tables Icon

Table 1 Parameters of the simulated system

Metrics