Abstract

We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structured illumination microscopy

Manish Saxena, Gangadhar Eluru, and Sai Siva Gorthi
Adv. Opt. Photon. 7(2) 241-275 (2015)

Frontiers in structured illumination microscopy

Florian Ströhl and Clemens F. Kaminski
Optica 3(6) 667-677 (2016)

Flexible structured illumination microscope with a programmable illumination array

Pavel Křížek, Ivan Raška, and Guy M. Hagen
Opt. Express 20(22) 24585-24599 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  3. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  5. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
    [Crossref] [PubMed]
  6. S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” Biomed. Opt. Express 2(3), 408–420 (2011).
    [Crossref] [PubMed]
  7. S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
    [Crossref]
  8. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [Crossref]
  9. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  10. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  11. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [Crossref] [PubMed]
  12. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
    [Crossref] [PubMed]
  13. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  14. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
    [Crossref] [PubMed]
  15. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  16. R. Heintzmann, “Structured illumination methods,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., 3rd ed. (Springer, 2006), pp. 265–279.
  17. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15(24), 16130–16140 (2007).
    [Crossref] [PubMed]
  18. P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
    [Crossref] [PubMed]
  19. K. O’Holleran and M. Shaw, “Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy,” Biomed. Opt. Express 5(8), 2580–2590 (2014).
    [Crossref] [PubMed]
  20. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
    [Crossref]
  21. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
    [Crossref] [PubMed]
  22. T. Lukeš, G. M. Hagen, P. Křížek, Z. Švindrych, K. Fliegel, and M. Klíma, “Comparison of image reconstruction methods for structured illumination microscopy,” in Proc. SPIE 9129, Biophotonics: Photonic Solutions for Better Health Care IV, 91293J (May 8, 2014) (2014), Vol. 9129, pp. 1–13.
  23. G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
    [Crossref]
  24. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
    [Crossref]
  25. P. J. Verveer and T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14(8), 1696–1706 (1997).
    [Crossref]
  26. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
    [Crossref] [PubMed]
  27. P. Milanfar, ed., Super-Resolution Imaging (CRC Press, 2011), p. 490.
  28. S. Chaudhuri, Super-Resolution Imaging (Kluwer Academic Publishers, 2000), p. 279.
  29. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-HIll Int., 1996).
  30. G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
    [Crossref] [PubMed]
  31. Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
    [Crossref] [PubMed]
  32. J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal. 8(1), 141–148 (1988).
    [Crossref]
  33. M. Geissbuehler and T. Lasser, “How to display data by color schemes compatible with red-green color perception deficiencies,” Opt. Express 21(8), 9862–9874 (2013).
    [Crossref] [PubMed]
  34. B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
    [Crossref]

2014 (1)

2013 (2)

M. Geissbuehler and T. Lasser, “How to display data by color schemes compatible with red-green color perception deficiencies,” Opt. Express 21(8), 9862–9874 (2013).
[Crossref] [PubMed]

B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
[Crossref]

2012 (4)

P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

2011 (2)

S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” Biomed. Opt. Express 2(3), 408–420 (2011).
[Crossref] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

2009 (5)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

2008 (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (4)

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1999 (2)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
[Crossref] [PubMed]

1997 (3)

1994 (1)

1988 (1)

J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal. 8(1), 141–148 (1988).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Arndt-Jovin, D. J.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Barisas, B. G.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Barzilai, J.

J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal. 8(1), 141–148 (1988).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Berclaz, C.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Boccara, A. C.

Bocchio, N. L.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Borwein, J. M.

J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal. 8(1), 141–148 (1988).
[Crossref]

Caarls, W.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chasles, F.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Cvacková, Z.

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Vries, A. H. B.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Dellagiacoma, C.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” Biomed. Opt. Express 2(3), 408–420 (2011).
[Crossref] [PubMed]

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Dubertret, B.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15(24), 16130–16140 (2007).
[Crossref] [PubMed]

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Fidlerová, H.

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Fritsch, C.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Geissbuehler, M.

Geissbuehler, S.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” Biomed. Opt. Express 2(3), 408–420 (2011).
[Crossref] [PubMed]

Gemkow, M. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
[Crossref] [PubMed]

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Gustafsson, M. G. L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hagen, G. M.

P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
[Crossref] [PubMed]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Heintzmann, R.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Hirvonen, L. M.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Jovin, T. M.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
[Crossref] [PubMed]

P. J. Verveer and T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14(8), 1696–1706 (1997).
[Crossref]

Juškaitis, R.

Kner, P.

B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
[Crossref]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Krížek, P.

Lasser, T.

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Leutenegger, M.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

Lidke, K. A.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Loriette, V.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Mandula, O.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

Mašata, M.

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Momany, M.

B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
[Crossref]

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Nehorai, A.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[Crossref]

Neil, M. A. A.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

O’Holleran, K.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Olivo-Marin, J.-C.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Orieux, F.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Raška, I.

P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
[Crossref] [PubMed]

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sarder, P.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[Crossref]

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Sepulveda, E.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shaw, M.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stanek, D.

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Thomas, B.

B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
[Crossref]

Van Der Voort, H. T. M.

G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
[Crossref]

Van Kempen, G. M. P.

G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
[Crossref]

Van Vliet, L. J.

G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
[Crossref]

Verveer, P. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
[Crossref] [PubMed]

G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
[Crossref]

P. J. Verveer and T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14(8), 1696–1706 (1997).
[Crossref]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Wichmann, J.

Wicker, K.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

Wilson, T.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (2)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Eur. Biophys. J. (1)

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38(6), 807–812 (2009).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[Crossref]

IEEE Trans. Image Process. (1)

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

IMA J. Numer. Anal. (1)

J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal. 8(1), 141–148 (1988).
[Crossref]

J. Microsc. (3)

G. M. P. Van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van Der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185(3), 354–365 (1997).
[Crossref]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193(1), 50–61 (1999).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. (1)

B. Thomas, M. Momany, and P. Kner, “Optical sectioning structured illumination microscopy with enhanced sensitivity,” J. Opt. 15(9), 094004 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

Z. Cvačková, M. Mašata, D. Stanĕk, H. Fidlerová, and I. Raška, “Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells,” J. Struct. Biol. 165(2), 107–117 (2009).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech. 72(6), 431–440 (2009).
[Crossref] [PubMed]

Nat. Methods (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Nanoscopy (1)

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Opt. Nanoscopy 1(1), 4 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (5)

R. Heintzmann, “Structured illumination methods,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., 3rd ed. (Springer, 2006), pp. 265–279.

T. Lukeš, G. M. Hagen, P. Křížek, Z. Švindrych, K. Fliegel, and M. Klíma, “Comparison of image reconstruction methods for structured illumination microscopy,” in Proc. SPIE 9129, Biophotonics: Photonic Solutions for Better Health Care IV, 91293J (May 8, 2014) (2014), Vol. 9129, pp. 1–13.

P. Milanfar, ed., Super-Resolution Imaging (CRC Press, 2011), p. 490.

S. Chaudhuri, Super-Resolution Imaging (Kluwer Academic Publishers, 2000), p. 279.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-HIll Int., 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of spectral merging (a) Spatial frequencies in Fourier space, where fc is the cut off frequency. (b) Power spectral density (PSD) in relation to the spatial frequency. (c) Blending frequency spectra of HR-MAP estimation and LR homodyne detection using low and high pass filters.

Fig. 2
Fig. 2

Structured illumination microscope: (a) the microscope setup, (b) examples of line grid illumination patterns. Top row shows a pattern sequence which creates homogenous illumination. Bottom row shows several line grid patterns in different orientations. Blue are “on” pixels creating the illumination, gray are “off” pixels.

Fig. 3
Fig. 3

Choice of the iteration step size (coefficient alpha) and its influence on the convergence of the algorithm. (a) Cost function vs. number of iterations. Fixed step size (red) and step size given by the Barzilai-Borwein method (blue). (b) Region of interest from a test sample (phalloidin-labeled actin in a HepG2 cell). Shown are the first 4 iterations of the algorithm, where the step size was determined using the Barzilai-Borwein method.

Fig. 4
Fig. 4

Flowchart of the MAP-SIM algorithm.

Fig. 5
Fig. 5

Measurements of the spatial resolution on a sample of fluorescent beads. Cross-sections of the PSF are obtained by averaging measurements over 50 beads along (a) lateral and (b) axial directions.

Fig. 6
Fig. 6

Comparison of different imaging methods. Drosophila salivary gland chromosome sample. (a, d) Widefield image and region of interest. (b, e) Square-law method and ROI. (c, f) MAP-SIM and ROI. (g) Line profile of the images, indicated by the white line in (a). (h) Plot of normalized power spectral density vs. reduced spatial frequency for widefield, square law, and MAP-SIM approaches.

Fig. 7
Fig. 7

Image of an autofluorescent pollen grain acquired using a 60 × /1.35 NA oil immersion objective. (a) Widefield image. (b) square-law method. (c) MAP-SIM. Shown are also XZ projections taken along the pixel row indicated by the white line.

Fig. 8
Fig. 8

Atto-532 Phalloidin labeled actin in a HepG2 cell. Maximum intensity projections of the 3D stack. (a) widefield, (b) square-law method, (c) MAP-SIM. Thickness of the sample is 7 µm. The look up table isolum [33] was used for depth color coding.

Fig. 9
Fig. 9

Comparison between SR-SIM processing and MAP-SIM. Maximum intensity projection of 23 Z-planes in each of two color channels (red, green) for (a) widefield, (b) SR-SIM, (c) MAP-SIM. (d, e) Regions of interest indicated in (b, c). (f, g) Single optical section in the red channel.

Fig. 10
Fig. 10

Performance of the proposed MAP-SIM method under various noise conditions in comparison to the widefield image. Data acquisition times are 400 ms, 50 ms and 25 ms respectively. Images are of mitochondria labelled with Mitotracker in BPAE cells.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

y k =H M k x+  n k ,
x ^ = arg max x [ P( x| y 1 , y 2 ,, y K ) ].
x ^ = arg max x [ logP( y 1 , y 2 ,, y K | x )+logP( x ) ].
P( y 1 , y 2 ,, y K | x )=  k=1 K P( y k |x ).
P( y k | x ) exp( y k H M k x 2 2 σ 2 ).
logP( x )=Γ( x )=  i [ ( Δ h x ) i 2 + ( Δ v x ) i 2 ] .
x ^ = argmin x [ k=1 K y k H M k x 2 +λΓ( x ) ].
x ( n+1 ) = x ( n ) α ( n ) g ( n ) .
OTF( f )=  1 π [ 2 cos 1 ( | f | f c )sin( 2 cos 1 ( | f | f c ) ) ],
x LR-HOM =| k=1 K y k exp( 2πi k K ) |
x MAP-SIM = 1 { ( 1β ){ x LR-HOM }exp( f 2 2 ρ 2 )+β{ x HR-MAP }( 1exp( f 2 2 ρ 2 ) ) },

Metrics