Abstract

Contactless, sterile and nondestructive separation of microobjects or living cells is demanded in many areas of biology and analytical chemistry, as well as in physics or engineering. Here we demonstrate advanced sorting methods based on the optical forces exerted by travelling interference fringes with tunable periodicity controlled by a spatial light modulator. Besides the sorting of spherical particles we also demonstrate separation of algal cells of different sizes and particles of different shapes. The three presented methods offer simultaneous sorting of more objects in static suspension placed in a Petri dish or on a microscope slide.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfluidic sorting with a moving array of optical traps

Raktim Dasgupta, Sunita Ahlawat, and Pradeep Kumar Gupta
Appl. Opt. 51(19) 4377-4387 (2012)

Raman sorting and identification of single living micro-organisms with optical tweezers

Changan Xie, De Chen, and Yong-qing Li
Opt. Lett. 30(14) 1800-1802 (2005)

Optical deflection and sorting of microparticles in a near-field optical geometry

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia
Opt. Express 16(6) 3712-3726 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
    [Crossref]
  2. K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
    [Crossref] [PubMed]
  3. A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
    [Crossref]
  4. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automater trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).
    [Crossref] [PubMed]
  5. J. Kovac and J. Voldman, “Intuitive, image-based cell sorting using optofluidic cell sorting,” Anal. Chem. 79, 9321–9330 (2007).
    [Crossref] [PubMed]
  6. I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
    [Crossref]
  7. X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
    [Crossref] [PubMed]
  8. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26, 5311–5316 (1987).
    [Crossref] [PubMed]
  9. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
    [Crossref]
  10. H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
    [Crossref]
  11. T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
    [Crossref] [PubMed]
  12. C. Xie, D. Chen, and Y. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800–1802 (2005).
    [Crossref] [PubMed]
  13. A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
    [Crossref]
  14. O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
    [Crossref]
  15. S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
    [Crossref] [PubMed]
  16. B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
    [Crossref] [PubMed]
  17. X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
    [Crossref]
  18. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [Crossref] [PubMed]
  19. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
    [Crossref]
  20. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
    [Crossref]
  21. A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
    [Crossref] [PubMed]
  22. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
    [Crossref] [PubMed]
  23. X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
    [Crossref]
  24. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
    [Crossref] [PubMed]
  25. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
    [Crossref] [PubMed]
  26. S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
    [Crossref]
  27. H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
    [Crossref]
  28. X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
    [Crossref]
  29. G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).
  30. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromography,” Appl. Phys. Lett. 83, 5316–5318 (2003).
    [Crossref]
  31. S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
    [Crossref] [PubMed]
  32. A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
    [Crossref]
  33. P. Ashok, R. Marchington, P. Mthunzi, T. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express 18, 6396–6407 (2010).
    [Crossref] [PubMed]
  34. P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
    [Crossref]
  35. O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
    [Crossref]
  36. B. A. Koss and D. G. Grier, “Optical peristalsis,” Appl. Phys. Lett. 82, 3985–3987 (2003).
    [Crossref]
  37. A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
    [Crossref] [PubMed]
  38. R. Dasgupta, R. Verma, and P. Gupta, “Microfluidic sorting with blinking optical traps,” Opt. Lett. 37, 1739–1741 (2012).
    [Crossref] [PubMed]
  39. A. Neild, T. Ng, and T. Woods, “Optimizing photophoresis and asymmetric force fields for grading of Brownian particles,” Appl. Opt. 48, 6820–6826 (2009).
    [Crossref] [PubMed]
  40. Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
    [Crossref]
  41. Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
    [Crossref]
  42. A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).
  43. A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
    [Crossref]
  44. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
    [Crossref]
  45. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
    [Crossref]
  46. R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
    [Crossref]
  47. R. Dasgupta, S. Ahlawat, and P. Gupta, “Microfluidic sorting with a moving array of optical traps,” Appl. Opt. 51, 4377–4387 (2012).
    [Crossref] [PubMed]
  48. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [Crossref]
  49. H. Risken, The Fokker-Planck Equation (Springer-Verlag, 1996).
  50. P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361, 57–265 (2002).
    [Crossref]
  51. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
    [Crossref]
  52. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]
  53. M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
    [Crossref]
  54. O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
    [Crossref] [PubMed]
  55. C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, 2004).
    [Crossref]
  56. H. A. Kramers, “Brownian motion in the field of force and the diffusion model of chemical reactions,” Physica 7, 284–304 (1940).
    [Crossref]
  57. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
    [Crossref]
  58. T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
    [Crossref]
  59. C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
    [Crossref]
  60. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
    [Crossref] [PubMed]
  61. A. V. Arzola, P. Jákl, L. Chvátal, and P. Zemánek, “Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles,” Opt. Express 22, 16207–16221 (2014).
    [Crossref] [PubMed]
  62. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
    [Crossref]
  63. J. P. B. Schaub and D. R. Alexander, “Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focusedlaser beam,” J. Appl. Phys. 66, 4594–4602(1989).
    [Crossref]
  64. L. Tsang, Scattering of Electromagnetic Waves (Wiley, 2001).
  65. F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
    [Crossref]

2014 (3)

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).

A. V. Arzola, P. Jákl, L. Chvátal, and P. Zemánek, “Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles,” Opt. Express 22, 16207–16221 (2014).
[Crossref] [PubMed]

2013 (5)

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

2012 (4)

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
[Crossref]

R. Dasgupta, S. Ahlawat, and P. Gupta, “Microfluidic sorting with a moving array of optical traps,” Appl. Opt. 51, 4377–4387 (2012).
[Crossref] [PubMed]

R. Dasgupta, R. Verma, and P. Gupta, “Microfluidic sorting with blinking optical traps,” Opt. Lett. 37, 1739–1741 (2012).
[Crossref] [PubMed]

2011 (6)

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[Crossref]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
[Crossref] [PubMed]

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (4)

A. Neild, T. Ng, and T. Woods, “Optimizing photophoresis and asymmetric force fields for grading of Brownian particles,” Appl. Opt. 48, 6820–6826 (2009).
[Crossref] [PubMed]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
[Crossref]

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

2008 (7)

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
[Crossref]

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[Crossref]

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[Crossref] [PubMed]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

2007 (6)

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[Crossref] [PubMed]

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

J. Kovac and J. Voldman, “Intuitive, image-based cell sorting using optofluidic cell sorting,” Anal. Chem. 79, 9321–9330 (2007).
[Crossref] [PubMed]

2006 (7)

B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
[Crossref]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automater trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

2005 (3)

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

C. Xie, D. Chen, and Y. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30, 1800–1802 (2005).
[Crossref] [PubMed]

2004 (3)

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[Crossref]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

2003 (3)

B. A. Koss and D. G. Grier, “Optical peristalsis,” Appl. Phys. Lett. 82, 3985–3987 (2003).
[Crossref]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromography,” Appl. Phys. Lett. 83, 5316–5318 (2003).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

2002 (2)

1995 (1)

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

1993 (1)

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

1989 (1)

J. P. B. Schaub and D. R. Alexander, “Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focusedlaser beam,” J. Appl. Phys. 66, 4594–4602(1989).
[Crossref]

1987 (1)

1940 (1)

H. A. Kramers, “Brownian motion in the field of force and the diffusion model of chemical reactions,” Physica 7, 284–304 (1940).
[Crossref]

1934 (1)

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

Ahlawat, S.

S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
[Crossref]

R. Dasgupta, S. Ahlawat, and P. Gupta, “Microfluidic sorting with a moving array of optical traps,” Appl. Opt. 51, 4377–4387 (2012).
[Crossref] [PubMed]

Albert, J.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Alexander, D. R.

J. P. B. Schaub and D. R. Alexander, “Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focusedlaser beam,” J. Appl. Phys. 66, 4594–4602(1989).
[Crossref]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Arnold, J.

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

Arzola, A. V.

A. V. Arzola, P. Jákl, L. Chvátal, and P. Zemánek, “Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles,” Opt. Express 22, 16207–16221 (2014).
[Crossref] [PubMed]

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[Crossref]

Ashihara, S.

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

Ashok, P.

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Balduzzi, D.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Bao, D.

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Bocklitz, T.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Branda, C.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Brzobohatý, O.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
[Crossref] [PubMed]

Bu, J.

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Buican, T. N.

Butler, W. F.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Champion, J. A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Chapin, S. C.

Chen, D.

Chen, S.

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Chung, D. S.

B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
[Crossref]

Chvátal, L.

A. V. Arzola, P. Jákl, L. Chvátal, and P. Zemánek, “Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles,” Opt. Express 22, 16207–16221 (2014).
[Crossref] [PubMed]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Cizmár, T.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Cižmár, T.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[Crossref]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Coppola, G.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Costa, K.

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Crissman, H. A.

Dam, J. S.

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

Dasgupta, R.

De Luca, A. C.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Dees, B.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Dholakia, K.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

P. Ashok, R. Marchington, P. Mthunzi, T. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express 18, 6396–6407 (2010).
[Crossref] [PubMed]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[Crossref] [PubMed]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[Crossref] [PubMed]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

Dochow, S.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Dufresne, E. R.

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Feng, J.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

Ferrara, M. A.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Ferraro, P.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Forster, A. H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Galli, A.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Gao, B.

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Garcés-Chávez, V.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, 2004).
[Crossref]

Germain, V.

Gigan, S.

G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).

Glückstad, J.

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

Gou, X.

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

Gouesbet, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

Gréhan, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

Grier, D. G.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[Crossref]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[Crossref]

B. A. Koss and D. G. Grier, “Optical peristalsis,” Appl. Phys. Lett. 82, 3985–3987 (2003).
[Crossref]

Gu, M.

Gupta, P.

Hagen, N.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Hart, S.

A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
[Crossref]

Hart, S. J.

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromography,” Appl. Phys. Lett. 83, 5316–5318 (2003).
[Crossref]

Hayashi, Y.

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

Henkel, T.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Ho, C. C.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

Höfemann, H.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

Imasaka, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

Ishidzu, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

Jákl, P.

Jankó, B.

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

Jonáš, A.

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
[Crossref]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[Crossref]

Kaiser, J.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Kaneta, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

Karásek, V.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
[Crossref] [PubMed]

Kariv, I.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[Crossref]

Katare, Y. K.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Kawabata, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

Keller, A.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

Kirei, H. I.

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

Kong, M.

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Koo, Y.-M.

B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
[Crossref]

Koss, B. A.

B. A. Koss and D. G. Grier, “Optical peristalsis,” Appl. Phys. Lett. 82, 3985–3987 (2003).
[Crossref]

Kovac, J.

J. Kovac and J. Voldman, “Intuitive, image-based cell sorting using optofluidic cell sorting,” Anal. Chem. 79, 9321–9330 (2007).
[Crossref] [PubMed]

Krafft, C.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Kramers, H. A.

H. A. Kramers, “Brownian motion in the field of force and the diffusion model of chemical reactions,” Physica 7, 284–304 (1940).
[Crossref]

Krauss, T.

Krauss, T. F.

Kumar, V.

S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
[Crossref]

Kuriakose, S.

Kuroda, K.

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

Lacasta, A. M.

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

Ladavac, K.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[Crossref]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[Crossref]

Landenberger, B.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

Lane, T.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Leski, T.

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

Li, B.

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

Li, R.

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Li, Y.

Libál, A.

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

Lin, J.

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Lindenberg, K.

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

Liška, M.

MacDonald, M.

MacDonald, M. P.

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

Manago, S.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Marchand, P. J.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Marchington, R.

Marchington, R. F.

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Martin, J.

Mateos, J. L.

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[Crossref]

Mayer, G.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Mazilu, M.

Mercer, E. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Milne, G.

Min, C.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

Mitragotri, S.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Mthunzi, P.

Neild, A.

Neugenbauer, U.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Ng, T.

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Odell, J. A.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

Ormos, P.

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

Oroszi, L.

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

Ottewill, R. H.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

Palima, D.

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

Patel, K.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[Crossref]

Perch-Nielsen, I. R.

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

Perrin, F.

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

Perroud, T.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Popp, J.

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Puglisi, R.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Ramos-García, R.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

Raymond, D. E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Reece, P. J.

Reichhardt, C.

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

Reichhardt, C. J. O.

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

Reimann, P.

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361, 57–265 (2002).
[Crossref]

Rendina, I.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Rhodes, D.

Ricárdez-Vargas, I.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

Risken, H.

H. Risken, The Fokker-Planck Equation (Springer-Verlag, 1996).

Rodríguez-Montero, P.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

Rohrbach, A.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

Romero, A. H.

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Salzman, G. C.

Samek, O.

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

Sancho, J. M.

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

Schaub, J. P. B.

J. P. B. Schaub and D. R. Alexander, “Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focusedlaser beam,” J. Appl. Phys. 66, 4594–4602(1989).
[Crossref]

Šerý, M.

P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Shimura, T.

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

Šiler, M.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
[Crossref] [PubMed]

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Singh, A.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Sirleto, L.

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

Smith, R. L.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

Smyth, M. J.

Spalding, G. C.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Stewart, C. C.

Stroud, R.

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

Sun, D.

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Sy, J.

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

Taylor, J.

A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
[Crossref]

Telle, H. H.

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

Terray, A.

A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
[Crossref]

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

Terray, A. V.

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromography,” Appl. Phys. Lett. 83, 5316–5318 (2003).
[Crossref]

Trojek, J.

Tsang, L.

L. Tsang, Scattering of Electromagnetic Waves (Wiley, 2001).

Tu, E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Valkai, S.

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

Verma, R.

S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
[Crossref]

R. Dasgupta, R. Verma, and P. Gupta, “Microfluidic sorting with blinking optical traps,” Opt. Lett. 37, 1739–1741 (2012).
[Crossref] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Voldman, J.

J. Kovac and J. Voldman, “Intuitive, image-based cell sorting using optofluidic cell sorting,” Anal. Chem. 79, 9321–9330 (2007).
[Crossref] [PubMed]

Volke-Sepúlveda, K.

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[Crossref]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

Volpe, G.

G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).

G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).

Wadle, S.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

Wang, M. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Wang, X.

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Wang, Z.

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Woods, T.

Wu, X.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

Xie, C.

Xin, H.

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

Yan, X.

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

Yang, J. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Yuan, X.

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Yuan, X.-C.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

Zemánek, P.

A. V. Arzola, P. Jákl, L. Chvátal, and P. Zemánek, “Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles,” Opt. Express 22, 16207–16221 (2014).
[Crossref] [PubMed]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, J. Trojek, and P. Zemánek, “Static and dynamic behavior of two optically bound microparticles in a standing wave,” Opt. Express 19, 19613–19626 (2011).
[Crossref] [PubMed]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
[Crossref]

P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[Crossref]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[Crossref]

Zhang, H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Zhang, Y.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

Zhao, B. S.

B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
[Crossref]

Zhong, F.

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

Zhu, S.

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Acta Biologica Hungarica (1)

H. I. Kirei, L. Oroszi, S. Valkai, and P. Ormos, “An all optical microfluidic sorter,” Acta Biologica Hungarica 58, 139–148 (2007).
[Crossref]

Anal. Chem. (4)

T. Perroud, J. Kaiser, J. Sy, T. Lane, C. Branda, A. Singh, and K. Patel, “Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces,” Anal. Chem. 80, 6365–6372 (2008).
[Crossref] [PubMed]

J. Kovac and J. Voldman, “Intuitive, image-based cell sorting using optofluidic cell sorting,” Anal. Chem. 79, 9321–9330 (2007).
[Crossref] [PubMed]

S. J. Hart, A. Terray, T. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78, 3221–3225 (2006).
[Crossref] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763–1765 (1995).
[Crossref]

Anal. Chim. Acta (1)

B. S. Zhao, Y.-M. Koo, and D. S. Chung, “Separations based on the mechanical forces of light,” Anal. Chim. Acta 556, 97–103 (2006).
[Crossref]

Appl. Opt. (3)

Appl. Optics (1)

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Optics 48, 1543–1552 (2009).
[Crossref]

Appl. Phys. Lett. (5)

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116(2006).
[Crossref]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromography,” Appl. Phys. Lett. 83, 5316–5318 (2003).
[Crossref]

P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[Crossref]

B. A. Koss and D. G. Grier, “Optical peristalsis,” Appl. Phys. Lett. 82, 3985–3987 (2003).
[Crossref]

X. Yuan, S. Zhu, J. Bu, Y. Sun, J. Lin, and B. Gao, “Large-angular separation of particles induced by cascaded deflection angles in optical sorting,” Appl. Phys. Lett. 93, 263901 (2008).
[Crossref]

Biomicrofluidics (1)

A. Terray, J. Taylor, and S. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106(2009).
[Crossref]

Colloid Polym. Sci. (1)

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid Polym. Sci. 271, 469–479 (1993).
[Crossref]

Electophoresis (1)

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
[Crossref]

J. Appl. Phys. (1)

J. P. B. Schaub and D. R. Alexander, “Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focusedlaser beam,” J. Appl. Phys. 66, 4594–4602(1989).
[Crossref]

J. Micromech.Microeng. (1)

X. Wang, X. Gou, X. Yan, and D. Sun, “Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition,” J. Micromech.Microeng. 23, 75006 (2013).
[Crossref]

J. Opt. (1)

S. Ahlawat, R. Dasgupta, R. Verma, V. Kumar, and P. Gupta, “Optical sorting in holographic trap arrays by tuning the inter-trap separation,” J. Opt. 14, 125501 (2012).
[Crossref]

J. Opt. A (1)

I. R. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A: Pure Appl. Opt. 9, S134–S138 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Radium (1)

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

Lab Chip (4)

X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugenbauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12, 3177–3183 (2012).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref] [PubMed]

Laser Phys. Lett. (5)

H. Xin, D. Bao, F. Zhong, and B. Li, “Photophoretic separation of particles using two tapered optical fibers,” Laser Phys. Lett. 10, 036004 (2013).
[Crossref]

X. Wu, Y. Zhang, C. Min, S. Zhu, J. Feng, and X.-C. Yuan, “Dynamic optical tweezers based assay for monitoring early drug resistance,” Laser Phys. Lett. 10, 065604 (2013).
[Crossref]

A. C. De Luca, S. Manago, M. A. Ferrara, I. Rendina, L. Sirleto, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro, and G. Coppola, “Non-invasive sex assessment in bovine semen by Raman spectroscopy,” Laser Phys. Lett. 11, 055604 (2014).
[Crossref]

O. Samek, P. Zemánek, A. Jonáš, and H. H. Telle, “Characterization of oil-producing microalgae using Raman spectroscopy,” Laser Phys. Lett. 8, 701–709 (2011).
[Crossref]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Methods Cell Biol. (1)

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23, 83–87 (2005).
[Crossref]

Nat. Photonics (1)

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čizmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

New. J. Phys. (2)

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

Opt. Commun. (1)

Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Particle sorting using optically induced asymmetric double-well potential,” Opt. Commun. 281, 3792–3798 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rep. (1)

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361, 57–265 (2002).
[Crossref]

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Phys. Rev. E (3)

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Dynamical analysis of an optical rocking ratchet: Theory and experiment,” Phys. Rev. E 87, 062910(2013).

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[Crossref]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[Crossref]

Phys. Rev. Lett. (3)

A. M. Lacasta, J. M. Sancho, A. H. Romero, and K. Lindenberg, “Sorting on periodic surfaces,” Phys. Rev. Lett. 94, 160601 (2005).
[Crossref] [PubMed]

A. Libál, C. Reichhardt, B. Jankó, and C. J. O. Reichhardt, “Dynamics, rectification, and fractionation for colloids on flashing substrates,” Phys. Rev. Lett. 96, 188301 (2006).
[Crossref] [PubMed]

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[Crossref]

Physica (1)

H. A. Kramers, “Brownian motion in the field of force and the diffusion model of chemical reactions,” Physica 7, 284–304 (1940).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Sci. Rep. (1)

G. Volpe, G. Volpe, and S. Gigan, “Microfluidic sorting with blinking optical traps,” Sci. Rep. 4, 3936 (2014).

Other (4)

H. Risken, The Fokker-Planck Equation (Springer-Verlag, 1996).

C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, 2004).
[Crossref]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

L. Tsang, Scattering of Electromagnetic Waves (Wiley, 2001).

Supplementary Material (4)

» Media 1: MP4 (52 KB)     
» Media 2: MP4 (1212 KB)     
» Media 3: MP4 (812 KB)     
» Media 4: MP4 (560 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Particle behaviour in travelling interference fringes. The blue particle feels deeper potential profile in the direction perpendicular to the fringes and thus if the fringes move to the right with velocity ux, the particle stays in the same potential well but the Stokes drag force Fd = −γux pushes the particle to the left. Such a particle is referred to as a Brownian surfer [50]. This situation is identical to the tilted periodic potential in the travelling reference frame where the lower potential barrier is still height enough to keep the particle in the same fringe (for reasonably long time). In contrast, the red particle in the right column feels much shallower or no periodic potential and it lags behind the fringe or falls down to the left in the tilted potential picture. Such a particle is referred to as a Brownian swimmer [50].

Fig. 2
Fig. 2

An example of the dependence of the mean particle velocity vx on the fringes travelling speeds ux and the potential barrier heights ΔU. The polystyrene particle (radius 1 μm) is immersed in water (viscosity ν = 0.001 Pa s) far from any solid interface and illuminated with an interference field with a spatial period L = 1 μm. Green curve denotes the maximal particle velocity vmax for each trap depth. Regions on the left (ux > 0) or the far right of the green curve correspond to the Brownian surfers or the Brownian swimmers, respectively.

Fig. 3
Fig. 3

Description of the sorting procedure for spheres of two different diameters. a) The fringes (green) move to the left and drag faster the larger blue particle. Therefore the smaller red particle lags behind the blue one. b) The direction of the fringes movement is reversed with smaller distance L between fringes. The smaller particle is dragged faster than the bigger one. Repetition of this procedure several times leads to increasing distance between larger and smaller particles - components of a heterogeneous suspension.

Fig. 4
Fig. 4

Experimental setup (see the text for details).

Fig. 5
Fig. 5

An example of optical sorting of polystyrene spheres of 2 μm and 3 μm in diameter (Duke Scientific 4K-02 and 4K-03) using fast travelling (ux = 14 μm.s−1) fringes of periodicity L = 2.15 μm only in one direction. Left and right images show the starting and final distributions of the spheres, respectively. The middle part denotes the trajectories of all spheres during sorting obtained from Media 1. Configuration B was used here.

Fig. 6
Fig. 6

An example of optical sorting of polystyrene spheres of 0.8 μm and 1.6 μm in diameter (Duke Scientific 3K-800 and 3K1600) using bidirectional movement of the fringes of periods L = 0.66μm (travelling downwards in the figure) and L = 0.28μm (travelling upwards), respectively. Left and right images show the starting and final distributions of the spheres, respectively. The middle part denotes the trajectories of all spheres during sorting obtained from Media 2. Configuration A was used in this experiment.

Fig. 7
Fig. 7

An example of separation of living cells of Trachydiscus minutus using sample travelling in xy plane perpendicularly through static interference fringes. Left and right images show the starting and final distributions of cells, respectively. The middle part denotes the trajectory of each cell during sorting obtained from the Media 3. The periods of fringes were L = 3.5μm and L = 0.8μm in configuration A.

Fig. 8
Fig. 8

An example of optical sorting of polystyrene spheres (diameter 1.99 μm) and oblate spheroidal particles of equal volume and ratio of semi-axes close to 1.6. The initial position is shown on the left. Sharper smaller objects are spheres, larger ones are oblate spheroids oriented with their minor axis towards the observer. This orientation was preferred for the fringes widths used in this figure, L = 1540 nm (L = 990 nm) was used for spheroids (spheres) motion up (down). The right part demonstrates the final situation, both spheroids are sorted upwards. The inset added to the right bottom shows the sphere and the spheroids rotated by 90° if the fringe width increased to L > 2μm. Configuration B was used in this experiment. Trajectories were obtained from Media 4 and rotated by 90°.

Fig. 9
Fig. 9

Amplitude of the optical force F x max ( a , L ) acting upon a particle of radius a placed into the interference fringes separated by L. The scaling of L along vertical axis is changed at L = 0.5 μm (marked by a dashed magenta line) in order to visualise area for L < 0.5 μm. White contours denote combination of parameters giving zero force amplitude. The selection of refractive index of the particles corresponds to one close to water (np =1.344), silica (np =1.46), polystyrene (np =1.59), and melamine (np =1.68). The sizes of polystyrene particles and fringe periods used in the experiments presented in Fig. 5 or Fig. 6 are marked with white dashed or dotted lines, respectively.

Fig. 10
Fig. 10

The trap depth ΔU (defined in Eq. (4)) for a particle of radius a placed into the interference fringes separated by L. The trap depth is shown in kBT units assuming T = 300 K. The used symbolism is the same as in Fig. 9. The scaling of the colour maps is split by the solid magenta curve into two regions in order to increase readability of lower trap depths.

Fig. 11
Fig. 11

Maximal average speed of particle vmax (the left column) is achieved for the fringes speed umax ploted in the right column. These speeds were calculated by finding global maximum of Eq. (11) using the trap depth ΔU taken from Fig. 10. The used symbolism is the same as in Fig. 9.

Fig. 12
Fig. 12

Top row: geometry of an oblate spheroid orientation in the interference fringes (parallel with yz plane). Plots below: Comparison of amplitude of the force efficiency Q x , 0 F as a function of the fringe period, spheroid orientations and aspect ratios. We considered sphere of diameter 1990 nm (black curve) and spheroid of the same volume (red curve). The thick parts of the red curves denote intervals in L where the theory predicts stable orientation. The green bars denote configuration (a/a = 1.6) used in the experiments shown in Fig. 8.

Fig. 13
Fig. 13

Dependence of Perrin’s translation friction coefficients Eqs. (13, 14) on the aspect ratio of the oblate spheroid. The full black line denotes the constant value for sphere.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = 2 I 0 [ 1 + cos ( 2 k x x ) ] = 2 I 0 [ 1 + cos ( 2 π x L ) ] = 2 I 0 [ 1 + cos ( X ) ] ,
F x = F 0 G ( Λ ) sin ( X ) , G ( Λ ) = sin ( Λ ) Λ cos ( Λ ) ,
α = 3 n p 2 n m 2 n p 2 + 2 n m 2 n p 2 n m 2 1 for n p n m 1 .
U x = F x ( x ) d x = F 0 L 2 π G ( Λ ) cos ( X ) Δ U 2 cos ( X + Φ ) ,
d x d t = 1 γ F ( x , t ) + 2 k B T γ ξ ( t ) ,
d x ¯ d t = 1 γ F ( x ¯ ) u x + 2 k B T γ ξ ( t ) .
x ¯ eq = sg ( u x ) L 2 π asin | γ u x F 0 G ( Λ ) | + N L + Ψ ,
x ¯ m x = sg ( u x ) [ L 2 π asin | γ u x F 0 G ( Λ ) | L 2 ] N L + Ψ ,
Ψ = 1 sg ( G ( Λ ) ) 2 L 2 , where sg ( x ) = { 1 for x > 0 0 for x = 0 1 for x < 0 .
U x ( x ¯ ) = Δ U 2 cos ( 2 π x ¯ L ) + γ u x x ¯ .
v x = u x L k B T γ exp ( γ u x L k B T ) 1 0 L d x x x + L d x exp { U ( x ) U ( x ) + ( x x ) γ u x k B T } .
F x max = I 0 λ vac 2 4 π 2 n m c Q x F .
f = 6 π η a 4 3 μ 2 / 3 1 μ 2 ( 2 μ 2 ) S ( μ ) 1 ,
f = 6 π η a 8 3 μ 2 / 3 1 μ 2 ( 2 3 μ 2 ) S ( μ ) + 1 ,
where S ( μ ) = tan 1 μ 2 1 μ 2 1 .

Metrics