Abstract

We report the development of a fully fiber-integrated pulsed master oscillator power fibre amplifier (MOPFA) source at 780 nm, producing 3.5 W of average power with 410 ps pulses at a repetition rate of 50 MHz. The source consists of an intensity modulated 1560 nm laser diode amplified in an erbium fiber amplifier chain, followed by a fiber coupled periodically poled lithium niobate crystal module for frequency doubling. The source is then used for generating visible light through four-wave mixing in a length of highly nonlinear photonic crystal fiber: 105 mW at 668 nm and 95 mW at 662 nm are obtained, with pump to anti-Stokes conversion slope efficiencies exceeding 6% in both cases.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion

Robert T. Murray, Edmund J. R. Kelleher, Sergei V. Popov, Arnaud Mussot, Alexandre Kudlinski, and James R. Taylor
Opt. Express 21(13) 15826-15833 (2013)

Synchronously pumped photonic crystal fiber-based optical parametric oscillator

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor
Opt. Lett. 37(15) 3156-3158 (2012)

Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation

Vincent Tombelaine, Alexis Labruyère, Jens Kobelke, Kay Schuster, Volker Reichel, Philippe Leproux, Vincent Couderc, Raphaël Jamier, and Hartmut Bartelt
Opt. Express 17(18) 15392-15401 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  2. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
    [Crossref]
  3. S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
    [Crossref] [PubMed]
  4. M. Laroche, C. Bartolacci, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source,” Opt. Lett. 36(19), 3909–3911 (2011).
    [Crossref] [PubMed]
  5. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
    [Crossref]
  6. B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett. 36(19), 3792–3794 (2011).
    [Crossref] [PubMed]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
    [Crossref] [PubMed]
  8. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
    [Crossref] [PubMed]
  9. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
    [Crossref] [PubMed]
  10. A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett. 37(1), 82–84 (2012).
    [Crossref] [PubMed]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  12. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

2008 (1)

2005 (1)

2003 (1)

2000 (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
[Crossref]

1994 (1)

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Bartolacci, C.

Cadier, B.

Chapman, B. H.

Chen, A. Y. H.

Chernikov, S. V.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
[Crossref]

Chiow, S. W.

Coen, S.

Dianov, E. M.

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

Dupriez, P.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Gilles, H.

Girard, S.

Golant, K. M.

Harvey, J. D.

Hell, S. W.

Herzog, A.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hogan, J. M.

Ishaaya, A. A.

Kasevich, M. A.

Kastrup, L.

Kelleher, E. J. R.

Knight, J. C.

Kovachy, T.

Lablonde, L.

Laroche, M.

Lavoute, L.

Leonhardt, R.

Murdoch, S. G.

Okhotnikov, O.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Popov, S. V.

B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett. 36(19), 3792–3794 (2011).
[Crossref] [PubMed]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
[Crossref]

Puustinen, J.

Rittweger, E.

Robin, T.

Russell, P. St. J.

Shamir, A.

Taylor, J. R.

B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett. 36(19), 3792–3794 (2011).
[Crossref] [PubMed]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
[Crossref]

Wadsworth, W. J.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wichmann, J.

Wildanger, D.

Wong, G. K. L.

Light Sci. Appl. (1)

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

Opt. Commun. (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1–4), 231–234 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett. 36(19), 3792–3794 (2011).
[Crossref] [PubMed]

M. Laroche, C. Bartolacci, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source,” Opt. Lett. 36(19), 3909–3911 (2011).
[Crossref] [PubMed]

A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett. 37(1), 82–84 (2012).
[Crossref] [PubMed]

S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
[Crossref] [PubMed]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the all-fiber 780 nm source by frequency doubling a 1560 nm MOPFA source in a fiber integrated PPLN module, and red parametric generation through four-wave mixing in a highly nonlinear PCF. (LD: laser diode, EDFA (1-4): Erbium doped fiber amplifier, PC: polarization controller, MZAM: Mach-Zehnder amplitude modulator, Tap: optical tap coupler, 2% port is used for monitoring the 1560 nm pulses, PPLN: periodically poled lithium niobate, DM: dichroic mirror, HWP: half waveplate, PCF: a highly nonlinear photonic crystal fiber).

Fig. 2
Fig. 2

(a) Spectrum of the amplified 1560 nm pulses after EDFA 4, (b) temporal profile of the 1560 nm pulses of the 2% port of the tap coupler.

Fig. 3
Fig. 3

(a) Spectrum of the frequency doubled output at 780 nm, (b) temperature tuning of the PPLN crystal taken at 15.6 W input power, (c) SHG output power and conversion efficiency at 780 nm as a function of input power at 1560 nm, (d) SHG pulse duration measured on streak camera.

Fig. 4
Fig. 4

(a) SEM image of the PCF, (b) dispersion profile of the fiber. The zero dispersion occurs at wavelength of 786.5 nm and 787.6 nm for fast and slow axis. The inset shows the details of the dispersion profile at zero dispersion wavelength for fast and slow axis.

Fig. 5
Fig. 5

Calculated phasematching diagrams for both fast and slow axis of the PCF. The inset shows the detail of the anti-stokes wavelengths for slow and fast axis.

Fig. 6
Fig. 6

(a) Spectra of the parametric wavelength conversion in the PCF showing pump and sidebands (b) spectrum of the anti-stokes output peaked at 668 nm, (c) pulse duration of anti-stokes measured by streak camera.

Fig. 7
Fig. 7

Anti-stokes power of both axes as a function of pump power coupled into PCF.

Metrics