Abstract

We describe the formation, characterization and theoretical understanding of microlenses comprised of alternating polystyrene and polymethylmethacrylate layers produced by multilayer coextrusion. These lenses are fabricated by photolithography, using a grayscale mask followed by plasma etching, so that the refractive index alternation of the bilayer stack appears across the radius of the microlens. The alternating quarter-wave thick layers form a one-dimensional photonic crystal whose dispersion augments the material dispersion, allowing one to sculpt the chromatic dispersion of the lens by adjusting the layered structure. Using Huygen’s principle, we model our experimental measurements of the focal length of these lenses across the reflection band of the multilayer polymer film from which the microlens is fashioned. For a 56 μm diameter multilayered lens of focal length 300 μm, we measured a ∼ 25% variation in the focal length across a shallow, 50 nm-wide reflection band.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the chromatic aberration of microlenses

Patrick Ruffieux, Toralf Scharf, Hans Peter Herzig, Reinhard Völkel, and Kenneth J. Weible
Opt. Express 14(11) 4687-4694 (2006)

Properties of microlenses produced on a layer of tot'hema and eosin sensitized gelatin

Branka D. Murić, Dejan V. Pantelić, Darko M. Vasiljević, and Bratimir M. Panić
Appl. Opt. 46(35) 8527-8532 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171–10180 (2006).
    [Crossref] [PubMed]
  2. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electronics 13, 233–253 (1977).
    [Crossref]
  3. K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
    [Crossref]
  4. R. F. Shyu and H. Yang, “A promising thermal pressing used in fabricating microlens array,” Int. J. Adv. Manuf. Technol. 36, 53–59 (2008).
    [Crossref]
  5. L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
    [Crossref]
  6. Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
    [Crossref] [PubMed]
  7. E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
    [Crossref]
  8. Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials 7, 277–290 (2008).
    [Crossref] [PubMed]
  9. T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
    [Crossref]
  10. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.
  11. E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
    [Crossref]
  12. J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
    [Crossref]
  13. S. A. Kemme and A. A. Cruz-Cabrera, “Fabricating surface-relief diffractive optical elements,” in S. A. Kemme, ed., Microoptics and Nanooptics Fabrication (CRC, 2010) pp. 1–38.
  14. H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
    [Crossref] [PubMed]
  15. J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
    [Crossref]
  16. R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.
  17. D. T. Moore, “Gradient index optics,” in M. Bass, ed., Handbook of Optics: Vol II, (McGraw-Hill Professional, 2004), ch. 9.
  18. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
    [Crossref]
  19. M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
    [Crossref]
  20. J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
    [Crossref]
  21. J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
    [Crossref]
  22. C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
    [Crossref] [PubMed]
  23. H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
    [Crossref]
  24. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
    [Crossref]
  25. J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
    [Crossref]
  26. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
    [Crossref]
  27. T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
    [Crossref]
  28. Fabricated by Canyon Materials, Inc., 6665 Nancy Ridge Drive, San Diego, CA 92121, USA. http://www.canyonmaterials.com/CMI-01-88-5.html
  29. M. Born and E. Wolf, Principles of Optics, 6th Ed. (Cambridge University, 1980) pp. 435–441.
  30. K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
    [Crossref] [PubMed]
  31. N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).
  32. J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
    [Crossref] [PubMed]
  33. M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
    [Crossref]
  34. C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
    [Crossref]

2014 (2)

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

2013 (1)

2012 (4)

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
[Crossref]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

2010 (1)

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

2009 (1)

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

2008 (3)

R. F. Shyu and H. Yang, “A promising thermal pressing used in fabricating microlens array,” Int. J. Adv. Manuf. Technol. 36, 53–59 (2008).
[Crossref]

Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials 7, 277–290 (2008).
[Crossref] [PubMed]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

2007 (3)

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
[Crossref]

J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
[Crossref]

2006 (1)

2005 (2)

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
[Crossref]

2003 (1)

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

2002 (2)

J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
[Crossref]

H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
[Crossref] [PubMed]

2001 (2)

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

1998 (1)

J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[Crossref]

1997 (1)

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

1996 (1)

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

1979 (1)

M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
[Crossref]

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electronics 13, 233–253 (1977).
[Crossref]

Andrews, J.

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

Andrews, J. H.

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Andrews, J.H.

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

Baer, E.

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

Bauer, C.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Beyrau, F.

Bonaccurso, E.

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th Ed. (Cambridge University, 1980) pp. 435–441.

Burt, T. M.

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

Butt, H.J.

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

Chen, C. F.

J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
[Crossref]

Chen, C. X.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Chen, K.-S.

K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
[Crossref]

Christenson, C. W.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Crenshaw, B. R.

J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
[Crossref]

Crescimanno, M.

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Cruz-Cabrera, A. A.

S. A. Kemme and A. A. Cruz-Cabrera, “Fabricating surface-relief diffractive optical elements,” in S. A. Kemme, ed., Microoptics and Nanooptics Fabrication (CRC, 2010) pp. 1–38.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.

Dawson, N.

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Dawson, N. J.

Deng, Y.

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

DeRege, P.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Edrington, A. C.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Fetters, L. J.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Fink, Y.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Fournier, P.

R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.

Giessen, H.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Graf, K.

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

Hadjichristidis, N.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Hankeln, B.

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

Hiltner, A.

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

Hösel, M.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
[Crossref]

Hu, J.

Hunter, B. V.

R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.

Jiang, H. X.

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Joannopoulos, J. D.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Johnson, J.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Kang, J. W.

J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
[Crossref]

Kazmierczak, T.

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

Kemme, S. A.

S. A. Kemme and A. A. Cruz-Cabrera, “Fabricating surface-relief diffractive optical elements,” in S. A. Kemme, ed., Microoptics and Nanooptics Fabrication (CRC, 2010) pp. 1–38.

Kim, E.

J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
[Crossref]

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Kim, J. J.

J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
[Crossref]

Kimura, M.

M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
[Crossref]

Kley, E.-B.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Ko, F.-H.

K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
[Crossref]

Korley, L. T. J.

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

Krebs, F. C.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
[Crossref]

Kumacheva, E.

Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials 7, 277–290 (2008).
[Crossref] [PubMed]

Kunzelman, J.

J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
[Crossref]

Lai, X.

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

Leipertz, A.

Li, L.

Liao, Y. S.

J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
[Crossref]

Lin, H.

Lin, I-K.

K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
[Crossref]

Lin, J. Y.

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Löffler, M.

Lott, J.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

Ma, Z.

Mahrt, R. F.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Mao, G.

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Miyamoto, T.

M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
[Crossref]

Moore, D. T.

D. T. Moore, “Gradient index optics,” in M. Bass, ed., Handbook of Optics: Vol II, (McGraw-Hill Professional, 2004), ch. 9.

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electronics 13, 233–253 (1977).
[Crossref]

Nie, Z.

Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials 7, 277–290 (2008).
[Crossref] [PubMed]

Niesenhaus, B.

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

Oder, T. N.

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Odom, T.W.

H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
[Crossref] [PubMed]

Okahara, K.

M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
[Crossref]

Paul, K.

J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[Crossref]

Peng, L.

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

Petrus, J.

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Petrus, J. B.

Pfadler, S.

Ponting, M.

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

Prentiss, M.

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Rogers, J. A.

J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[Crossref]

Rogers, J.A.

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Ryan, C.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Saini, A.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Scherf, U.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Schiraldi, D.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Schmitt, C.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Schnabel, B.

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Shakya, J.

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

Shan, J.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Shyu, R. F.

R. F. Shyu and H. Yang, “A promising thermal pressing used in fabricating microlens array,” Int. J. Adv. Manuf. Technol. 36, 53–59 (2008).
[Crossref]

Singer, K.

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

Singer, K. D.

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

Singer, K.D.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Søndergaard, R. R.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
[Crossref]

Song, H.

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

J. H. Andrews, M. Crescimanno, N. J. Dawson, G. Mao, J. B. Petrus, K. D. Singer, E. Baer, and H. Song, “Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing,” Opt. Express 20, 15580–15588 (2012).
[Crossref] [PubMed]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.

Swager, T. M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Thomas, E. L.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Urbas, A. M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Valle, B.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

Wade, R. K.

R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.

Walters, B.

R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.

Weder, C.

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
[Crossref]

Whitesides, G. M.

J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[Crossref]

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

Whitesides, G.M.

H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
[Crossref] [PubMed]

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th Ed. (Cambridge University, 1980) pp. 435–441.

Wu, H.K.

H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
[Crossref] [PubMed]

Wu, Y.

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[Crossref] [PubMed]

Xenidou, M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

Xia, Y.

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Yang, H.

R. F. Shyu and H. Yang, “A promising thermal pressing used in fabricating microlens array,” Int. J. Adv. Manuf. Technol. 36, 53–59 (2008).
[Crossref]

Yang, J. J.

J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
[Crossref]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electronics 13, 233–253 (1977).
[Crossref]

Yi, P.

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

Zhang, P.

Zhao, X.-M.

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Zhou, J.

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

Zhou, W.

Adv. Mater. (4)

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[Crossref]

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[Crossref]

C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K.D. Singer, and J. Shan, “Roll-to-roll fabrication of multilayer films for high capacity optical data storage,” Adv. Mater. 24, 5222–5226 (2012).
[Crossref] [PubMed]

C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161–1164 (2001).
[Crossref]

Anal. Chem. (1)

H.K. Wu, T.W. Odom, and G.M. Whitesides, “Reduction photolithography using microlens arrays:Applications in gray scale photolithography,” Anal. Chem. 74, 3267–3273 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “Nitride microlens arrays for blue and UV wavelength applications,” Appl. Phys. Lett. 82(21), 3692–3694 (2003).
[Crossref]

E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[Crossref]

IEEE J. Quantum Electronics (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electronics 13, 233–253 (1977).
[Crossref]

Ind. Eng. Chem. Res. (1)

M. Ponting, T. M. Burt, L. T. J. Korley, J.H. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49(23), 12111–12118 (2010).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

R. F. Shyu and H. Yang, “A promising thermal pressing used in fabricating microlens array,” Int. J. Adv. Manuf. Technol. 36, 53–59 (2008).
[Crossref]

J. Appl. Phys. (1)

M. Kimura, K. Okahara, and T. Miyamoto, “Tunable multilayer-film distributed-Bragg-reflector filter,” J. Appl. Phys. 50, 1222–1225 (1979).
[Crossref]

J. Mater. Chem. (2)

J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes - a new mechanism for humidity sensors,” J. Mater. Chem. 17, 2989–2991 (2007).
[Crossref]

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[Crossref]

J. Micromech. Microeng. (2)

L. Peng, Y. Deng, P. Yi, and X. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1) 0130011 (2014).
[Crossref]

K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng. 15, 1894–1903 (2005).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (2)

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51, 16–34 (2012).
[Crossref]

J. H. Andrews, M. Crescimanno, K. D. Singer, and E. Baer, “Melt-processed polymer multilayer distributed feedback lasers: progress and prospects,” J. Polym. Sci., Part B: Polym. Phys. 52, 251–271 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. A. Rogers, K. Paul, and G. M. Whitesides, “Quantifying distortions in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[Crossref]

Macromol. Rapid Commun. (1)

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2010–2016 (2007).
[Crossref]

Nature Materials (1)

Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials 7, 277–290 (2008).
[Crossref] [PubMed]

Nonlin. Opt. Quantum Opt. (1)

N. Dawson, K. D. Singer, J. H. Andrews, M. Crescimanno, G. Mao, J. Petrus, H. Song, and E. Baer, “Post-Process Tunability of Folded One-Dimensional All-Polymer Photonic Crystal Microcavity Lasers,” Nonlin. Opt. Quantum Opt. 45, 101–111 (2012).

Opt. Commun. (1)

J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

J. W. Kang, E. Kim, and J. J. Kim, “All-optical switch and modulator using photochromic dye doped polymer waveguides,” Opt. Mater. 21, 543–548 (2002).
[Crossref]

Opt. Mater. Express (1)

Science (1)

Y. Xia, E. Kim, X.-M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref] [PubMed]

Other (6)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, in M. C. Hutley, ed., Microlens Arrays, IOP Short Meetings Series No. 30 (Institute of Physics, 1991), p. 23.

R. K. Wade, B. V. Hunter, B. Walters, and P. Fournier, “Properties, specifications, and tolerances of GRADIUM glasses,” in Optical Science, Engineering and Instrumentation ’97, (International Society for Optics and Photonics, 1997) pp. 63–74.

D. T. Moore, “Gradient index optics,” in M. Bass, ed., Handbook of Optics: Vol II, (McGraw-Hill Professional, 2004), ch. 9.

S. A. Kemme and A. A. Cruz-Cabrera, “Fabricating surface-relief diffractive optical elements,” in S. A. Kemme, ed., Microoptics and Nanooptics Fabrication (CRC, 2010) pp. 1–38.

Fabricated by Canyon Materials, Inc., 6665 Nancy Ridge Drive, San Diego, CA 92121, USA. http://www.canyonmaterials.com/CMI-01-88-5.html

M. Born and E. Wolf, Principles of Optics, 6th Ed. (Cambridge University, 1980) pp. 435–441.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Microscope image of grayscale mask (top left) with (b) radial optical density (O.D) profile (bottom left). (c) Polymer multilayer microlens AFM image viewed in contact mode reveals the salient layering of the different polymers (top right) and (d) a typical polymer multilayer microlens AFM cross-section (bottom right).

Fig. 2
Fig. 2

Experimental setup for characterizing the spectral dispersion of the focusing properties of the microlenses.

Fig. 3
Fig. 3

The dashed blue trace is a typical multilayered co-extruded polymer microlens light curve of captured focused light. The wavelength for this light curve is 695±.5 nm and the focal length is ∼ 300 microns. The solid red trace is an idealized light curve, from physical optics theory assuming monochromatic light (∼ 695 nm) incident along the optical axis of the microlens whose dimensions are given in Section 4.

Fig. 4
Fig. 4

Fixing the notation for a section of an oblate spheroid lens, showing ellipse semima-jor (a) and semiminor (b) axes, the outer radius of the raised plano-convex lens shape Rmax, and the depth of the center of the ellipse (d) below the plane of the surface supporting the lens.

Fig. 5
Fig. 5

Multilayered microlens computed focal length dispersion using physical optics theory described in the text. The dashed red trace is the computed transmission band of the 32 perfectly uniform layer model (layer indexes of 1.58 and 1.44) showing a reflection band between 440 and 510 nm. In solid green is the computed fractional change in the focal length (df/f) of the multilayer structure showing a profound change around the reflection band edge.

Fig. 6
Fig. 6

Measured layered microlens focal length dispersion (green ‘×’) using the fiber transport system described in the text and the layered material’s transmission spectrum (red ‘+’). The lens material has an easily discernable shallow reflection band from about 430 nm to 510 nm. The len’s focal length dispersion is pronounced across the band, amounting to nearly 25% changes in the ∼300 μm focal length.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ˜ = R max 2 b d b b + d ,
d ψ = z h e i k 0 r r d A
S h = 1 X h r inner r outer r d r e i k 0 r 2 2 ( X h ) ( z h e i k 0 h 1 ) ,
S h = 𝒜 ( z h e i k 0 h 1 ) [ e i k 0 r outer 2 2 ( X h ) e i k 0 r inner 2 2 ( X h ) ] ,

Metrics