Abstract

In order to investigate the performance of two different algorithms for retrieving temperature from Rayleigh-Brillouin (RB) line shapes, RB scattering measurements have been performed in air at a wavelength of 403 nm, for a temperature range from 257 K to 330 K, and atmospherically relevant pressures from 871 hPa to 1013 hPa. One algorithm, based on the Tenti S6 line shape model, shows very good accordance with the reference temperature. In particular, the absolute difference is always less than 2 K. A linear correlation yields a slope of 1.01 ± 0.02 and thus clearly demonstrates the reliability of the retrieval procedure. The second algorithm, based on an analytical line shape model, shows larger discrepancies of up to 9.9 K and is thus not useful at its present stage. The possible reasons for these discrepancies and improvements of the analytical model are discussed. The obtained outcomes are additionally verified with previously performed RB measurements in air, at 366 nm, temperatures from 255 K to 338 K and pressures from 643 hPa to 826 hPa Appl. Opt. 5246402013[. The presented results are of relevance for future lidar studies that might utilize RB scattering for retrieving atmospheric temperature profiles with high accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rayleigh–Brillouin scattering profiles of air at different temperatures and pressures

Ziyu Gu, Benjamin Witschas, Willem van de Water, and Wim Ubachs
Appl. Opt. 52(19) 4640-4651 (2013)

Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air

Benjamin Witschas, Maria O. Vieitez, Eric-Jan van Duijn, Oliver Reitebuch, Willem van de Water, and Wim Ubachs
Appl. Opt. 49(22) 4217-4227 (2010)

Horizontal lidar measurements for the proof of spontaneous Rayleigh–Brillouin scattering in the atmosphere

Benjamin Witschas, Christian Lemmerz, and Oliver Reitebuch
Appl. Opt. 51(25) 6207-6219 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
    [Crossref]
  2. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [Crossref]
  3. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
    [Crossref] [PubMed]
  4. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
    [Crossref]
  5. B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background - Methods - Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
    [Crossref]
  6. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
    [Crossref]
  7. A. Young and G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
    [Crossref] [PubMed]
  8. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  9. B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
    [Crossref] [PubMed]
  10. M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
    [Crossref]
  11. Z. Y. Gu, B. Witschas, W. van de Water, and W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52, 4640–4651 (2013).
    [Crossref] [PubMed]
  12. Z. Y. Gu and W. Ubachs, “A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases,” J. Chem. Phys. 141, 104329 (2014).
    [Crossref]
  13. B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
    [Crossref] [PubMed]
  14. B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air: errata,” Appl. Opt. 50, 5758 (2011).
    [Crossref]
  15. Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
    [Crossref] [PubMed]
  16. P. Wilksch, “Instrument function of the Fabry-Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985).
    [Crossref] [PubMed]
  17. M. McGill, W. Skinner, and T. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [Crossref] [PubMed]
  18. B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51, 6207–6219 (2012).
    [Crossref] [PubMed]
  19. T. D. Rossing, ed. Springer Handbook of Acoustics(Springer, 2007).
  20. N. Hagen, M. Kupinski, and E. L. Dereniak, “Gaussian profile estimation in one dimension,” Appl. Opt. 46, 5374–5383 (2007).
    [Crossref] [PubMed]
  21. Y. Ma, F. Fan, K. Liang, H. Li, Y. Yu, and B. Zhou, “An analytical model for Rayleigh-Brillouin scattering spectra in gases,” J. Opt. 14, 095703 (2012).
    [Crossref]
  22. Y. Ma, H. Li, Z. Y. Gu, W. Ubachs, Y. Yu, J. Huang, B. Zhou, Y. Wang, and K. Liang, “Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air,” Opt. Express 22, 2092–2104 (2014).
    [Crossref] [PubMed]
  23. B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39, 1972–1975 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51, 6207–6219 (2012).
[Crossref] [PubMed]

Y. Ma, F. Fan, K. Liang, H. Li, Y. Yu, and B. Zhou, “An analytical model for Rayleigh-Brillouin scattering spectra in gases,” J. Opt. 14, 095703 (2012).
[Crossref]

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[Crossref]

2007 (1)

2004 (2)

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[Crossref] [PubMed]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

2000 (1)

1997 (1)

1985 (1)

1983 (1)

1974 (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Alpers, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Behrendt, A.

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Boley, C.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Dam, N.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

de Wijn, A. S.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

Dereniak, E. L.

Desai, R.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Eixmann, R.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Fan, F.

Y. Ma, F. Fan, K. Liang, H. Li, Y. Yu, and B. Zhou, “An analytical model for Rayleigh-Brillouin scattering spectra in gases,” J. Opt. 14, 095703 (2012).
[Crossref]

Fiocco, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Fricke-Begemann, C.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Greding, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Gu, Z. Y.

Y. Ma, H. Li, Z. Y. Gu, W. Ubachs, Y. Yu, J. Huang, B. Zhou, Y. Wang, and K. Liang, “Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air,” Opt. Express 22, 2092–2104 (2014).
[Crossref] [PubMed]

Z. Y. Gu and W. Ubachs, “A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases,” J. Chem. Phys. 141, 104329 (2014).
[Crossref]

Z. Y. Gu, B. Witschas, W. van de Water, and W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52, 4640–4651 (2013).
[Crossref] [PubMed]

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

Hagen, N.

Höffner, J.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Huang, J.

Irgang, T.

Kattawar, G.

Kupinski, M.

Lemmerz, C.

Li, H.

Liang, K.

Ma, Y.

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Maischberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

McGill, M.

Meijer, A.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

Nakamura, T.

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[Crossref]

Reichardt, J.

Reitebuch, O.

Skinner, W.

Tenti, G.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Tsuda, T.

Ubachs, W.

Z. Y. Gu and W. Ubachs, “A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases,” J. Chem. Phys. 141, 104329 (2014).
[Crossref]

Y. Ma, H. Li, Z. Y. Gu, W. Ubachs, Y. Yu, J. Huang, B. Zhou, Y. Wang, and K. Liang, “Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air,” Opt. Express 22, 2092–2104 (2014).
[Crossref] [PubMed]

Z. Y. Gu, B. Witschas, W. van de Water, and W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52, 4640–4651 (2013).
[Crossref] [PubMed]

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

van de Water, W.

van Duijn, E. J.

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

Vieitez, M. O.

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

Wang, Y.

Wilksch, P.

Witschas, B.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39, 1972–1975 (2014).
[Crossref] [PubMed]

Z. Y. Gu, B. Witschas, W. van de Water, and W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52, 4640–4651 (2013).
[Crossref] [PubMed]

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51, 6207–6219 (2012).
[Crossref] [PubMed]

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air: errata,” Appl. Opt. 50, 5758 (2011).
[Crossref]

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[Crossref] [PubMed]

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background - Methods - Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
[Crossref]

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[Crossref]

Young, A.

Yu, Y.

Zhou, B.

Appl. Opt. (11)

A. Young and G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
[Crossref] [PubMed]

P. Wilksch, “Instrument function of the Fabry-Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985).
[Crossref] [PubMed]

M. McGill, W. Skinner, and T. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[Crossref] [PubMed]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[Crossref]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[Crossref] [PubMed]

N. Hagen, M. Kupinski, and E. L. Dereniak, “Gaussian profile estimation in one dimension,” Appl. Opt. 46, 5374–5383 (2007).
[Crossref] [PubMed]

B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[Crossref] [PubMed]

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[Crossref] [PubMed]

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air: errata,” Appl. Opt. 50, 5758 (2011).
[Crossref]

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51, 6207–6219 (2012).
[Crossref] [PubMed]

Z. Y. Gu, B. Witschas, W. van de Water, and W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52, 4640–4651 (2013).
[Crossref] [PubMed]

Atmos. Chem. Phys. (2)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[Crossref]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4, 793–800 (2004).
[Crossref]

Can. J. Phys. (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

J. Chem. Phys. (1)

Z. Y. Gu and W. Ubachs, “A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases,” J. Chem. Phys. 141, 104329 (2014).
[Crossref]

J. Opt. (1)

Y. Ma, F. Fan, K. Liang, H. Li, Y. Yu, and B. Zhou, “An analytical model for Rayleigh-Brillouin scattering spectra in gases,” J. Opt. 14, 095703 (2012).
[Crossref]

Nat. Phys. Sci. (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 1094–1622 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012).
[Crossref] [PubMed]

Other (2)

T. D. Rossing, ed. Springer Handbook of Acoustics(Springer, 2007).

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background - Methods - Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. red: Ti:Sa laser beam (806 nm), dark blue: blue beam (403 nm), light blue: scattered radiation, green: reference beam, SC: scattering cell, PD: photo diode, PZT: piezo-electrical translator, FPI: Fabry-Pérot interferometer, PMT: photomultiplier, HCS: Hänsch-Couillaud stabilization, DAQ: data acquisition unit.

Fig. 2
Fig. 2

(Top): Measured FPI instrument function (black dots) and best fit of an Airy function (red line) and an Airy function considering defects according to Eq. (1) (blue line). (Bottom): Respective residuals in % with respect to the transmission peak intensity.

Fig. 3
Fig. 3

RB spectra measured at 403 nm and different temperatures and pressures (see label), averaged for frequency intervals of 150 MHz and normalized to equal area. The error bars indicate the standard deviation of the respective data point resulting from the averaging procedure. Details about the respective measurement conditions can be found in Table 2.

Fig. 4
Fig. 4

(left): Squared deviation between measured and model RB line shape depending on temperature and particle concentration calculated according to Eq. (5). (right, top): Measured RB spectrum (TPt100 = 295.5 K, p = 1010 hPa, black crosses) and best-fit according to the Tenti S6 model calculation (TTenti = 294.6 K, Ipar = 0.41% of IRB, blue solid line) and the analytical model calculation (Tanal. = 292.8 K, Ipar = 0.34% of IRB, red dashed line). (right, bottom): Deviation between measured and model RB line shape in % with respect to peak intensity.

Fig. 5
Fig. 5

Temperature values retrieved from RB spectra measured at 366 nm (left) and 403 nm (right) by using the Tenti S6 model (blue) and the analytical line shape model (red) compared to reference temperature measured with a Pt100 sensor. Detailed values are given in Table 2. The gray line indicates Tmodel = TPt100 line.

Tables (2)

Tables Icon

Table 2 Overview of experimental conditions and retrieved temperature values.

Tables Icon

Table 1 Gas transport coefficients for air at temperature T used for Tenti S6 model calculations [19].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

𝒯 ( f ) = 1 Γ FSR ( 1 + 2 k = 1 R k cos ( 2 π k f Γ FSR ) exp ( 2 π 2 k 2 σ g 2 Γ FSR 2 ) )
p meas = p amb T meas T amb
= 𝒯 ( f ) * 𝒮 ( T , p , f )
𝒮 ( T , p , f ) = I RB 𝒮 RB ( T , p , f ) + I par δ par ( f )
χ 2 = i ( 𝒮 meas , i 𝒮 model , i ) 2
= I RB Γ FSR [ 𝒜 ( 1 + 2 k = 1 R k cos ( 2 π k ( f f 0 ) Γ FSR ) exp ( 2 π 2 k 2 ( σ g 2 + σ R 2 ) Γ FSR 2 ) ) + 1 𝒜 2 ( 1 + 2 k = 1 R k cos ( 2 π k ( f f 0 f B ) Γ FSR ) exp ( 2 π 2 k 2 ( σ g 2 + σ B 2 ) Γ FSR 2 ) ) + 1 𝒜 2 ( 1 + 2 k = 1 R k cos ( 2 π k ( f f 0 + f B ) Γ FSR ) exp ( 2 π 2 k 2 ( σ g 2 + σ B 2 ) Γ FSR 2 ) ) ] + I par Γ FSR [ ( 1 + 2 k = 1 R k cos ( 2 π k ( f f 0 ) Γ FSR ) exp ( 2 π 2 k 2 σ g 2 Γ FSR 2 ) ) ]
Δ T angle = θ tan ( θ / 2 ) T 0.02 T
Δ T model = ( Δ T noise ) 2 + ( Δ T angle ) 2

Metrics