Abstract

Single-shot digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA) is proposed. Both amplitude and quantitative phase distributions of waves containing multiple wavelengths are simultaneously recorded with a single reference arm in a single monochromatic image. Then, multiple wavelength information is separately extracted in the spatial frequency domain. The crosstalk between the object waves with different wavelengths is avoided and the number of wavelengths recorded with both a single-shot exposure and no crosstalk can be increased, by a large spatial carrier that causes the aliasing, and/or by use of a grating. The validity of Multi-SPECTRA is quantitatively, numerically, and experimentally confirmed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts

Tatsuki Tahara, Reo Otani, Kaito Omae, Takuya Gotohda, Yasuhiko Arai, and Yasuhiro Takaki
Opt. Express 25(10) 11157-11172 (2017)

Multiwavelength parallel phase-shifting digital holography using angular multiplexing

Tatsuki Tahara, Yasunori Ito, Yonghee Lee, Peng Xia, Junichi Inoue, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba
Opt. Lett. 38(15) 2789-2791 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962).
    [Crossref]
  3. T. Kubota, K. Komai, M. Yamagiwa, and Y. Awatsuji, “Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation,” Opt. Express 15(22), 14348–14354 (2007).
    [Crossref] [PubMed]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [Crossref]
  5. Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11(7), 1507–1514 (1972).
    [Crossref] [PubMed]
  6. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  7. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
    [Crossref] [PubMed]
  8. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
    [Crossref]
  9. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38(23), 4990–4996 (1999).
    [Crossref] [PubMed]
  10. V. Mićo, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref]
  11. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase-contrast imaging by a computed-tomography microscope,” Appl. Opt. 31(5), 670–674 (1992).
    [Crossref] [PubMed]
  12. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7–8), 567–574 (2000).
    [Crossref]
  13. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
    [Crossref] [PubMed]
  14. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
    [Crossref]
  15. M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
    [Crossref] [PubMed]
  16. N. Tsumura, R. Usuba, K. Takase, T. Nakaguchi, N. Ojima, N. Komeda, and Y. Miyake, “Image-based control of skin translucency,” Appl. Opt. 47(35), 6543–6549 (2008).
    [Crossref] [PubMed]
  17. Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
    [Crossref] [PubMed]
  18. B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
    [Crossref] [PubMed]
  19. P. Memmolo, A. Finizio, M. Paturzo, P. Ferraro, and B. Javidi, “Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation,” Opt. Lett. 37(9), 1445–1447 (2012).
    [Crossref] [PubMed]
  20. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
    [Crossref] [PubMed]
  21. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002).
    [Crossref] [PubMed]
  22. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
    [Crossref]
  23. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett. 37(10), 1724–1726 (2012).
    [Crossref] [PubMed]
  24. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
    [Crossref] [PubMed]
  25. T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
    [Crossref]
  26. P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
    [Crossref] [PubMed]
  27. T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
    [Crossref]
  28. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29(11), 1625–1630 (1990).
    [Crossref] [PubMed]
  29. Q. D. Pham, S. Hasegawa, T. Kiire, D. Barada, T. Yatagai, and Y. Hayasaki, “Selectable-wavelength low-coherence digital holography with chromatic phase shifter,” Opt. Express 20(18), 19744–19756 (2012).
    [Crossref] [PubMed]
  30. Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
    [Crossref]
  31. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37(11), 2013–2015 (2012).
    [PubMed]
  32. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  33. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11(7), 767–774 (2003).
    [Crossref] [PubMed]
  34. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16(4), 2514–2519 (2008).
    [Crossref] [PubMed]
  35. A. Wada, M. Kato, and Y. Ishii, “Multiple-wavelength digital holographic interferometry using tunable laser diodes,” Appl. Opt. 47(12), 2053–2060 (2008).
    [Crossref] [PubMed]
  36. H. Funamizu, S. Shimoma, and Y. Aizu, “Color digital holography using speckle illumination by means of a multi-mode fiber,” Opt. Commun. 312, 245–251 (2014).
    [Crossref]
  37. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39(7), 1857–1860 (2014).
    [Crossref] [PubMed]
  38. D. Barada, T. Kiire, J. Sugisaka, S. Kawata, and T. Yatagai, “Simultaneous two-wavelength Doppler phase-shifting digital holography,” Appl. Opt. 50(34), H237–H244 (2011).
    [Crossref] [PubMed]
  39. T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
    [Crossref] [PubMed]
  40. T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, “Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms,” Opt. Express 17(4), 2686–2695 (2009).
    [Crossref] [PubMed]
  41. P. Tankam, Q. Song, M. Karray, J. C. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35(12), 2055–2057 (2010).
    [Crossref] [PubMed]
  42. M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50(7), B96–B101 (2011).
    [Crossref] [PubMed]
  43. J. M. Desse, P. Picart, and P. Tankam, “Sensor influence in digital 3λ holographic interferometry,” Meas. Sci. Technol. 22(6), 064005 (2011).
    [Crossref]
  44. A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4(12), 1667–1668 (1965).
    [Crossref]
  45. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  46. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
    [PubMed]
  47. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [Crossref] [PubMed]
  48. T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18(19), 19867–19875 (2010).
    [Crossref] [PubMed]
  49. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  50. D. J. Bone, H.-A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25(10), 1653–1660 (1986).
    [Crossref] [PubMed]
  51. T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).
  52. N. Demoli, H. Halaq, K. Šariri, M. Torzynski, and D. Vukicevic, “Undersampled digital holography,” Opt. Express 17(18), 15842–15852 (2009).
    [Crossref] [PubMed]
  53. M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20(16), 18303–18312 (2012).
    [Crossref] [PubMed]
  54. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26(24), 5245–5258 (1987).
    [Crossref] [PubMed]
  55. T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41(4), 771–778 (2002).
    [Crossref]
  56. A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Opt. Eng. 43(1), 239–250 (2004).
    [Crossref]
  57. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).
  58. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
    [Crossref] [PubMed]
  59. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

2014 (3)

2013 (3)

2012 (10)

M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20(16), 18303–18312 (2012).
[Crossref] [PubMed]

T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
[Crossref] [PubMed]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Q. D. Pham, S. Hasegawa, T. Kiire, D. Barada, T. Yatagai, and Y. Hayasaki, “Selectable-wavelength low-coherence digital holography with chromatic phase shifter,” Opt. Express 20(18), 19744–19756 (2012).
[Crossref] [PubMed]

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37(11), 2013–2015 (2012).
[PubMed]

P. Memmolo, A. Finizio, M. Paturzo, P. Ferraro, and B. Javidi, “Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation,” Opt. Lett. 37(9), 1445–1447 (2012).
[Crossref] [PubMed]

J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett. 37(10), 1724–1726 (2012).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

2009 (3)

2008 (6)

2007 (2)

2006 (1)

2005 (2)

2004 (1)

A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Opt. Eng. 43(1), 239–250 (2004).
[Crossref]

2003 (1)

2002 (3)

2001 (2)

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
[Crossref] [PubMed]

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

2000 (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7–8), 567–574 (2000).
[Crossref]

1999 (1)

1995 (1)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

1992 (1)

1990 (1)

1987 (1)

1986 (1)

1982 (1)

1972 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

1965 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Aizu, Y.

H. Funamizu, S. Shimoma, and Y. Aizu, “Color digital holography using speckle illumination by means of a multi-mode fiber,” Opt. Commun. 312, 245–251 (2014).
[Crossref]

Alfieri, D.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[Crossref] [PubMed]

Andrés, P.

Araiza-Esquivel, M. A.

Awatsuji, Y.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

T. Kubota, K. Komai, M. Yamagiwa, and Y. Awatsuji, “Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation,” Opt. Express 15(22), 14348–14354 (2007).
[Crossref] [PubMed]

Bachor, H.-A.

Barada, D.

Bingham, P. R.

Bone, D. J.

Bonitz, J.

Charrière, F.

Clemente, P.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

Colomb, T.

Cuche, E.

Dasari, R. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

De la Torre-Ibarra, M. H.

De Nicola, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[Crossref] [PubMed]

Demoli, N.

Depeursinge, C.

Desse, J. M.

Di, J.

Doh, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Durán, V.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

Emery, Y.

Endo, H.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Falldorf, C.

Ferraro, P.

Finizio, A.

Fujita, K.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Funamizu, H.

H. Funamizu, S. Shimoma, and Y. Aizu, “Color digital holography using speckle illumination by means of a multi-mode fiber,” Opt. Commun. 312, 245–251 (2014).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Greivenkamp, J. E.

Griebner, U.

Grilli, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

Grunwald, R.

Halaq, H.

Hansel, T.

Hasegawa, S.

Hayasaki, Y.

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Hong, S.-H.

Horisaki, R.

Hoshiba, T.

Ichioka, Y.

Ina, H.

Inoue, T.

Inuiya, M.

Ishii, Y.

Ito, K.

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Ito, Y.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

Itoh, K.

Javidi, B.

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
[Crossref] [PubMed]

P. Memmolo, A. Finizio, M. Paturzo, P. Ferraro, and B. Javidi, “Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation,” Opt. Lett. 37(9), 1445–1447 (2012).
[Crossref] [PubMed]

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37(11), 2013–2015 (2012).
[PubMed]

M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50(7), B96–B101 (2011).
[Crossref] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Opt. Eng. 43(1), 239–250 (2004).
[Crossref]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
[Crossref] [PubMed]

Jiang, H.

Kakue, T.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Kang, J. W.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Karray, M.

Kashiwagi, T.

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Kato, J.

Kato, M.

Kaufmann, C.

Kawai, H.

Kawata, S.

Kebbel, V.

Khmaladze, A.

Kiire, T.

Kim, M.

Kim, M. K.

Kobayashi, S.

Komai, K.

Komeda, N.

Kreis, T. M.

T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41(4), 771–778 (2002).
[Crossref]

Kubota, T.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

T. Kubota, K. Komai, M. Yamagiwa, and Y. Awatsuji, “Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation,” Opt. Express 15(22), 14348–14354 (2007).
[Crossref] [PubMed]

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Kühn, J.

Lancis, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Leclercq, M.

Leith, E. N.

Li, J. C.

Lo, C.-M.

Lohmann, A. W.

Lue, N.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Mann, C.

Mann, C. J.

Marquet, P.

Martínez-León, L.

Matoba, O.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
[Crossref] [PubMed]

Matsumura, T.

Memmolo, P.

Miccio, L.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

Mico, V.

Minami, S.

Miyake, Y.

Montfort, F.

Moreno, I.

Murakami, Y.

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7–8), 567–574 (2000).
[Crossref]

Naik, D. N.

Nakaguchi, T.

Nakazaki, K.

Nishio, K.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Noda, T.

Ohzu, H.

Ojima, N.

Okada, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Osten, W.

Palonpon, A. F.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Paquit, V. C.

Paturzo, M.

Pavillon, N.

Pedrini, G.

Pham, Q. D.

Picart, P.

Pierattini, G.

Poon, T.-C.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Sandeman, R. J.

Santoyo, F. M.

Šariri, K.

Saucedo-A, T.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Seelamantula, C. S.

Shimoma, S.

H. Funamizu, S. Shimoma, and Y. Aizu, “Color digital holography using speckle illumination by means of a multi-mode fiber,” Opt. Commun. 312, 245–251 (2014).
[Crossref]

Shimozato, Y.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

Shinoda, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Smith, N. I.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Sodeoka, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Song, Q.

Steinmeyer, G.

Stern, A.

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37(11), 2013–2015 (2012).
[PubMed]

A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Opt. Eng. 43(1), 239–250 (2004).
[Crossref]

Sugisaka, J.

Suzuki, Y.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Tahara, T.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Tajahuerce, E.

Takabayashi, E.

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Takaki, Y.

Takase, K.

Takeda, M.

Tanida, J.

Tankam, P.

Tobin, K. W.

Torres-Company, V.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

Torzynski, M.

Tsumura, N.

Ueda, K.

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Unser, M.

Upatnieks, J.

Ura, S.

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Usuba, R.

Vukicevic, D.

Wada, A.

Watanabe, E.

Watanabe, M.

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Wu, M.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Xia, P.

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

Yamagiwa, M.

Yamaguchi, I.

Yamaguchi, M.

Yaqoob, Z.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7–8), 567–574 (2000).
[Crossref]

Yatagai, T.

Yoshida, T.

Yu, L.

Zalevsky, Z.

Zhao, J.

Appl. Opt. (14)

Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11(7), 1507–1514 (1972).
[Crossref] [PubMed]

D. J. Bone, H.-A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25(10), 1653–1660 (1986).
[Crossref] [PubMed]

J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26(24), 5245–5258 (1987).
[Crossref] [PubMed]

K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29(11), 1625–1630 (1990).
[Crossref] [PubMed]

T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase-contrast imaging by a computed-tomography microscope,” Appl. Opt. 31(5), 670–674 (1992).
[Crossref] [PubMed]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38(23), 4990–4996 (1999).
[Crossref] [PubMed]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
[Crossref] [PubMed]

A. Wada, M. Kato, and Y. Ishii, “Multiple-wavelength digital holographic interferometry using tunable laser diodes,” Appl. Opt. 47(12), 2053–2060 (2008).
[Crossref] [PubMed]

A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4(12), 1667–1668 (1965).
[Crossref]

N. Tsumura, R. Usuba, K. Takase, T. Nakaguchi, N. Ojima, N. Komeda, and Y. Miyake, “Image-based control of skin translucency,” Appl. Opt. 47(35), 6543–6549 (2008).
[Crossref] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[Crossref] [PubMed]

M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50(7), B96–B101 (2011).
[Crossref] [PubMed]

P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50(34), H177–H182 (2011).
[Crossref] [PubMed]

D. Barada, T. Kiire, J. Sugisaka, S. Kawata, and T. Yatagai, “Simultaneous two-wavelength Doppler phase-shifting digital holography,” Appl. Opt. 50(34), H237–H244 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 022502 (2013).

Appl. Phys. Lett. (2)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

J. Disp. Tech. (3)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Tech. 4(1), 97–100 (2008).
[Crossref]

T. Kakue, K. Ito, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Tech. 6(10), 472–478 (2010).
[Crossref]

Y. Ito, Y. Shimozato, P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Four-wavelength color digital holography,” J. Disp. Tech. 8(10), 570–576 (2012).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

J. M. Desse, P. Picart, and P. Tankam, “Sensor influence in digital 3λ holographic interferometry,” Meas. Sci. Technol. 22(6), 064005 (2011).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Funamizu, S. Shimoma, and Y. Aizu, “Color digital holography using speckle illumination by means of a multi-mode fiber,” Opt. Commun. 312, 245–251 (2014).
[Crossref]

Opt. Eng. (3)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41(4), 771–778 (2002).
[Crossref]

A. Stern and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Opt. Eng. 43(1), 239–250 (2004).
[Crossref]

Opt. Express (14)

N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11(7), 767–774 (2003).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

T. Kubota, K. Komai, M. Yamagiwa, and Y. Awatsuji, “Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation,” Opt. Express 15(22), 14348–14354 (2007).
[Crossref] [PubMed]

J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16(4), 2514–2519 (2008).
[Crossref] [PubMed]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
[Crossref] [PubMed]

A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
[PubMed]

T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, “Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms,” Opt. Express 17(4), 2686–2695 (2009).
[Crossref] [PubMed]

N. Demoli, H. Halaq, K. Šariri, M. Torzynski, and D. Vukicevic, “Undersampled digital holography,” Opt. Express 17(18), 15842–15852 (2009).
[Crossref] [PubMed]

C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18(19), 19867–19875 (2010).
[Crossref] [PubMed]

M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20(16), 18303–18312 (2012).
[Crossref] [PubMed]

Q. D. Pham, S. Hasegawa, T. Kiire, D. Barada, T. Yatagai, and Y. Hayasaki, “Selectable-wavelength low-coherence digital holography with chromatic phase shifter,” Opt. Express 20(18), 19744–19756 (2012).
[Crossref] [PubMed]

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
[Crossref] [PubMed]

Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7–8), 567–574 (2000).
[Crossref]

Opt. Lett. (10)

I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
[Crossref] [PubMed]

J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002).
[Crossref] [PubMed]

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer,” Opt. Lett. 39(7), 1857–1860 (2014).
[Crossref] [PubMed]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
[Crossref] [PubMed]

P. Memmolo, A. Finizio, M. Paturzo, P. Ferraro, and B. Javidi, “Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation,” Opt. Lett. 37(9), 1445–1447 (2012).
[Crossref] [PubMed]

J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett. 37(10), 1724–1726 (2012).
[Crossref] [PubMed]

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37(11), 2013–2015 (2012).
[PubMed]

T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
[Crossref] [PubMed]

P. Tankam, Q. Song, M. Karray, J. C. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35(12), 2055–2057 (2010).
[Crossref] [PubMed]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[Crossref] [PubMed]

Phys. Rev. A (1)

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 28–32 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Kubota, E. Takabayashi, T. Kashiwagi, M. Watanabe, and K. Ueda, “Color reflection holography using four recording wavelengths,” Proc. SPIE 4296, 126–133 (2001).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of optical implementations in Multi-SPECTRA. Examples of the systems when using (a) a single reference beam and (b) a grating. A spatial carrier is generated by both a mirror and a grating.

Fig. 2
Fig. 2

Incident angles of reference waves to generate a spatial carrier and spatial frequency distributions of holograms recorded by Multi-SPECTRA. (a) and (b) show cases using a reference beam with a large 2D spatial carrier, and small and large 1D spatial carriers, respectively. Aliasing occurs when using a large spatial carrier and the object-wave spectra are 1/d shifted by the periodicity of the digital signal. (c) and (d) show cases using a grating utilized to change the 2D and 1D propagation directions of the reference waves, respectively.

Fig. 3
Fig. 3

Schematics of (a) the resolution and (b) the field of view in an off-axis configuration.

Fig. 4
Fig. 4

Spatial frequency conditions in (a) Multi-SPECTRA using a single reference beam and (b) a low and (c) a high spatial carrier that satisfies the sampling theorem.

Fig. 5
Fig. 5

Amplitude distributions at (a) 640 nm, (b) 532 nm, and (c) 473 nm and (d) phase distribution of the object waves in the numerical simulation. (e) Color-synthesized image of the object waves.

Fig. 6
Fig. 6

Numerical results. (a) Spatial frequency distribution of the hologram, amplitude distributions at (b) 640 nm, (c) 532 nm, and (d) 473 nm and (e) color-synthesized image of the object waves, which is obtained by the spectrum arrangement shown in Fig. 4(b). (f) Spatial frequency distribution of the hologram, amplitude distributions at (g) 640 nm, (h) 532 nm, and (i) 473 nm and (j) color-synthesized image of the object waves, which is obtained by Multi-SPECTRA using a single reference beam. (k) Spatial frequency distribution of the hologram, amplitude distributions at (l) 640 nm, (m) 532 nm, and (n) 473 nm and (o) color-synthesized image of the object waves, which is obtained by Multi-SPECTRA using a grating. The areas circled by red, green, and blue lines shown in (a), (f), and (k) show the object wave spectra at 640 nm, 532 nm, and 473 nm, respectively.

Fig. 7
Fig. 7

Schematic of the optical setup for this experiment.

Fig. 8
Fig. 8

Object and experimental results. Images of the measured object illuminated by lasers at the wavelengths of (a) 640 nm and (b) 532 nm. (c) Color-synthesized image obtained from (a) and (b). (d) Spatial frequency distribution of a hologram based on the arrangement in Fig. 3(b), images obtained from the spectra in the areas circled by (e) red and (f) green lines. The areas surrounded by blue lines indicate the unwanted images caused by the crosstalk noise. (g) Color-synthesized image obtained from (e) and (f). (d) Spatial frequency distribution of a hologram obtained by Multi-SPECTRA, object images at the wavelengths of (i) 640 nm and (j) 532nm. (k) Color-synthesized image obtained from (i) and (j).

Fig. 9
Fig. 9

Schematic of the constructed (a) reflection- and (b) transmission-type multiwavelength digital holographic microscopy based on Multi-SPECTRA.

Fig. 10
Fig. 10

Experimental results for a high-resolution reflection USAF1951 test target that is tilted to the depth direction. Spatial frequency spectra of the holograms obtained by (a) the arrangement shown in Fig. 4(b) and (b) Multi-SPECTRA. (c)-(f) and (g), (h) are images obtained from λ2 = 532 nm spectrum of the areas circled by green solid and dotted lines shown in (a), respectively, for comparison. (i)-(p) are images obtained by Multi-SPECTRA. (i)-(l) Whole images reconstructed from a single hologram. (i) and (j) are obtained from λ1 = 640 nm component shown in (b), and (k) and (l) are obtained from λ2 = 532 nm component shown in (b). The depth difference between (i),(k) and (j),(l) was 1755 nm in the object plane. (m)-(p) are magnified images of (i)-(l). The areas surrounded by red lines in (i)-(l) indicate the areas of (m)-(p). The areas surrounded by blue rectangles indicate the areas in focus. Group 9 line 3 in a high-resolution USAF 1951 has 775 nm width or height and these structures are resolved as shown in Figs. (m) – (p).

Fig. 11
Fig. 11

Experimental results for a transparent specimen in multiwavelength digital holographic microscopy using a reference arm. Spatial frequency distributions of holograms with (a) a low spatial carrier, (b) a high spatial carrier that satisfies the sampling theorem, and (c) Multi-SPECTRA. (d)-(g), (h)-(k), and (l)-(o) are obtained from (a), (b), and (c), respectively. (d), (h), (l) Amplitude and (e), (i), (m) phase images at 640 nm. (f), (j), (n) Amplitude and (g), (k), (o) phase images at 532 nm. The areas surrounded by orange lines in (h)-(k) indicate areas with crosstalk noises. The scale bar shown in (o) is 10 μm.

Fig. 12
Fig. 12

(a) An optical implementation for 3D multispectral imaging with a femtosecond pulsed laser. (b) The detail of the reference arm for selectively extracting wavelengths.

Tables (1)

Tables Icon

Table 1 Cross correlations and root-mean-square errors of the reconstructed images.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

f=sinθ/λ
tanα=L/( 2 Z obj ),
f λ N = sinθ λ N
f λ N1 = sinθ λ N1
f obj λ N = sinα λ N
f obj λ N1 = sinα λ N1
f λ N f λ N1 f obj λ N + f obj λ N1
f λ N +3 f obj λ N 2 d
sinθ λ N sinθ λ N1 sinα λ N + sinα λ N1
sinθ λ N1 + λ N λ N1 λ N sinα
sinθ λ N + 3sinα λ N 2 d
sinθ 2 λ N d 3sinα
λ N1 + λ N λ N1 λ N sin α max = 2 λ N d 3sin α max
sin α max = λ N ( λ N1 λ N ) 2 (2 λ N1 λ N )d
α max = sin 1 { λ N ( λ N1 λ N ) 2 (2 λ N1 λ N )d }
sin θ max = 2 λ N d 3 λ N ( λ N1 λ N ) 2 (2 λ N1 λ N )d
= λ N ( λ N1 + λ N ) 2 (2 λ N1 λ N )d
θ max = sin 1 { λ N ( λ N1 + λ N ) 2 (2 λ N1 λ N )d }
f λ 1 2 f obj λ N + f obj λ 1
f λ N = 1 2 2 d
sin θ low = λ N 2 2 d
θ low = sin 1 ( λ N 2 2 d )
λ N 2 2 d = λ N1 + λ N λ N1 λ N sin α low
sin α low = λ N ( λ N1 λ N ) 2 2 ( λ N1 + λ N )d
α low = sin 1 { λ N ( λ N1 λ N ) 2 2 ( λ N1 + λ N )d }
f λ 1 2 f obj λ N + f obj λ 1
f λ N 2 + f obj λ N 1 2d
α high = sin 1 { λ N ( λ N1 λ N ) {(2+ 2 ) λ N1 (2 2 ) λ N }d }
θ high = sin 1 { λ N {(2+1/ 2 ) λ N1 (21/ 2 ) λ N } {(1+ 2 ) λ N1 (1 2 ) λ N }d }

Metrics