Abstract

In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR–LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10−9. Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible and re-configurable optical three-input XOR logic gate of phase-modulated signals with multicast functionality for potential application in optical physical-layer network coding

Guo-Wei Lu, Jun Qin, Hongxiang Wang, XuYuefeng Ji, Gazi Mohammad Sharif, and Shigeru Yamaguchi
Opt. Express 24(3) 2299-2306 (2016)

All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing

Jian Wang, Qizhen Sun, and Junqiang Sun
Opt. Express 17(15) 12555-12563 (2009)

Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals

Trung D. Vo, Ravi Pant, Mark D. Pelusi, Jochen Schröder, Duk-Yong Choi, Sukhanta K. Debbarma, Stephen J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Lett. 36(5) 710-712 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  2. G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
    [Crossref]
  3. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  4. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004).
    [Crossref] [PubMed]
  5. D. Hisano, A. Maruta, and K. Kitayama, “Demonstration of all-optical network coding by using SOA-MZI based XOR gates,” Proc. OFC’ 13, paper JW2A.58, 2013.
    [Crossref]
  6. Y. An, F. D. Ros, and C. Peucheret, “All-optical network coding for DPSK signals,” Proc. OFC’ 13, paper JW2A.60, 2013.
    [Crossref]
  7. G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [Crossref] [PubMed]
  8. C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
    [Crossref]
  9. M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
    [Crossref]
  10. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
    [Crossref] [PubMed]
  11. W. Dawei, C. Tee-Hiang, Y. Yong-Kee, X. Zhaowen, W. Yixin, X. Gaoxi, and L. Jianguo, “Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity,” J. Lightwave Technol. 28(24), 3497–3505 (2010).
  12. A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
    [Crossref]
  13. J. Wang, J. Sun, Q. Sun, X. Zhang, and D. Huang, “All-optical 40 Gbit/s multicasting XOR logic gate for NRZ-DPSK signals,” Proc. OFC’ 08, paper SaK42, 2008.
    [Crossref]
  14. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
    [Crossref] [PubMed]
  15. K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
    [Crossref]
  16. N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
    [Crossref]
  17. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Ultrafast all-optical three-input boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33(13), 1419–1421 (2008).
    [Crossref] [PubMed]
  18. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
    [Crossref]
  19. M. Matsuura, N. Calabretta, O. Raz, and H. J. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011).
    [Crossref] [PubMed]
  20. E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using Single Quantum-Dot SOA and optical filter,” J. Lightwave Technol. 31(23), 3813–3821 (2013).
    [Crossref]
  21. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  22. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [Crossref]
  23. G.-W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol. 29(16), 2460–2466 (2011).
    [Crossref]
  24. G. Contestabile, L. Banchi, M. Presi, and E. Ciaramella, “Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing,” J. Lightwave Technol. 27(19), 4256–4261 (2009).
    [Crossref]
  25. J. P. Lacey, M. A. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
    [Crossref]
  26. K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011).
    [Crossref]
  27. K. Akahane, N. Yamamoto, T. Umezawa, A. Kanno, and T. Kawanishi, “A semiconductor optical amplifier comprising highly stacked InAs quantum dots fabricated using the strain-compensation technique, ” Jpn. J. Appl. Phys. 53(04EG02) (2014).

2014 (1)

2013 (1)

2012 (1)

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

2011 (5)

2010 (1)

2009 (2)

2008 (2)

2007 (1)

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[Crossref]

2006 (1)

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

2004 (2)

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004).
[Crossref] [PubMed]

2003 (1)

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

2000 (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

1999 (1)

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

1998 (1)

1987 (1)

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Abedin, K. S.

Akahane, K.

K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011).
[Crossref]

Andrekson, P. A.

G.-W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol. 29(16), 2460–2466 (2011).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Anlin, Y.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Banchi, L.

Bin, L.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Blow, K.

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

Braun, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Calabretta, N.

Chan, C.-K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chan, K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chen, L. K.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chen, L.-K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Chitgarha, M. R.

Ciaramella, E.

Contestabile, G.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

G. Contestabile, L. Banchi, M. Presi, and E. Ciaramella, “Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing,” J. Lightwave Technol. 27(19), 4256–4261 (2009).
[Crossref]

Dawei, W.

Deng, N.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Dimitriadou, E.

Dorren, H. J.

Fejer, M. M.

Fok, M. P.

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[Crossref]

Galili, M.

Gaoxi, X.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hu, H.

Huang, D.

Hvam, J. M.

Jeppesen, P.

Ji, H.

Jianguo, L.

Ju Han, L.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Karlsson, M.

Kawanishi, T.

K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011).
[Crossref]

Kelly, A.

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

Khaleghi, S.

Kitayama, K.-i.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

Lacey, J. P.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Lianshan, Y.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Liu, D.

Lu, G.-W.

Lundstrom, C.

Madden, S.

Manning, R.

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

Maruta, A.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

Matsuura, M.

Miyazaki, T.

Morito, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

Oxenløwe, L. K.

Poustie, A.

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

Presi, M.

Pu, M.

Raz, O.

Rouskas, G. N.

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

Sekiguchi, S.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

Shibata, N.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Shu, C.

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[Crossref]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Sugawara, M.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

Summerfield, M. A.

Sun, J.

Sun, Q.

Tee-Hiang, C.

Tipsuwannakul, E.

Tong, F.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Waarts, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Wang, J.

Wang, Y.

Wei, P.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Willner, A. E.

Yamamoto, N.

K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011).
[Crossref]

Yilmaz, O. F.

Yinghui, G.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Yixin, W.

Yong-Kee, Y.

Yvind, K.

Zhang, X.

Zhaowen, X.

Zhiyu, C.

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Zoiros, K. E.

IEEE J. Quantum Electron. (2)

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011).
[Crossref]

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

IEEE Netw. (1)

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (3)

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[Crossref]

J. Lightwave Technol. (6)

Opt. Commun. (1)

A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Status Solidi A. (1)

K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011).
[Crossref]

Other (4)

K. Akahane, N. Yamamoto, T. Umezawa, A. Kanno, and T. Kawanishi, “A semiconductor optical amplifier comprising highly stacked InAs quantum dots fabricated using the strain-compensation technique, ” Jpn. J. Appl. Phys. 53(04EG02) (2014).

J. Wang, J. Sun, Q. Sun, X. Zhang, and D. Huang, “All-optical 40 Gbit/s multicasting XOR logic gate for NRZ-DPSK signals,” Proc. OFC’ 08, paper SaK42, 2008.
[Crossref]

D. Hisano, A. Maruta, and K. Kitayama, “Demonstration of all-optical network coding by using SOA-MZI based XOR gates,” Proc. OFC’ 13, paper JW2A.58, 2013.
[Crossref]

Y. An, F. D. Ros, and C. Peucheret, “All-optical network coding for DPSK signals,” Proc. OFC’ 13, paper JW2A.60, 2013.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operation principle of the simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK signals based on four-wave mixing without additional pump in QD-SOA.

Fig. 2
Fig. 2

Experiment setup. PM-TL: polarization maintaining tunable laser; PM-OC: polarization maintaining optical coupler; EDFA: erbium-doped ðber ampliðer; AWG: arrayed waveguide grating. ODL: optical delay line. PC: polarization controller. OBPF: optical band-pass filter. ATT: attenuator. DLI: delay-line interferometer; BPD: balanced photo detector;

Fig. 3
Fig. 3

Optical spectrum at the (a) input and (b) output of the QD-SOA.

Fig. 4
Fig. 4

Measured BER performance versus received power for the output MWM and XOR-LGM channels.

Fig. 5
Fig. 5

Measured eye diagrams at the output of the QD-SOA for (a) λ 1 , 1548.689nm. (b) λ 1a ,1550.298nm. (c) λ 1b ,1555.119nm. (d) λ XOR1 ,1546.291nm. (e) λ 2 ,1549.494nm. (f) λ 2a ,1547.890nm. (g) λ 2b ,1554.316nm. (h) λ XOR2 ,1551.099nm. (i) λ 3 ,1551.902nm. (j) λ 3a ,1545.495nm. (k) λ 3b ,1547.092nm. (l) λ XOR3 ,1552.705nm. All with 20ps/div.

Fig. 6
Fig. 6

50-bit demodulated waveforms of the three input signal: (a) DPSK1, (b) DPSK2, (c) DPSK3.

Fig. 7
Fig. 7

50-bit demodulated waveforms of three XOR-LGM channels at (a) λ XOR1 , (b) λ XOR2 , (c) λ XOR3 .

Tables (2)

Tables Icon

Table 1 Phase Patterns of the Simultaneous MWM and XOR-LGM Scheme for Three Input NRZ-DPSK Channels

Tables Icon

Table 2 Performance of the Simultaneous MWM and XOR-LGM Scheme

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E 1a A 2 2 A 1 * , φ 1a =2 φ 2 φ 1 ; E 1b A 3 2 A 1 * , φ 1b =2 φ 3 φ 1
E 2a A 1 2 A 2 * , φ 2a =2 φ 1 φ 2 ; E 2b A 3 2 A 2 * , φ 2b =2 φ 3 φ 2
E 3a A 1 2 A 3 * , φ 3a =2 φ 1 φ 3 ; E 3b A 2 2 A 3 * , φ 3b =2 φ 2 φ 3
E XOR1 A 1 A 2 A 3 * , φ XOR1 = φ 1 + φ 2 φ 3
E XOR2 A 1 A 3 A 2 * , φ XOR2 = φ 1 + φ 3 φ 2
E XOR3 A 2 A 3 A 1 * , φ XOR3 = φ 2 + φ 3 φ 1

Metrics