Abstract

We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable chrominance and highly improved luminescent quantum yield of YV1-xPxO4: Tm, Dy, Eu inverse opal white light phosphors

Pingwei Zhou, Yongsheng Zhu, Wen Xu, Lin Xu, and Hongwei Song
Opt. Express 21(22) 25744-25751 (2013)

Crystal field and Zeeman splittings for energy levels of Nd3+ in hexagonal AlN

John B. Gruber, Gary W. Burdick, Ulrich Vetter, Brandon Mitchell, Volkmar Dierolf, and Hans Hofsäss
Opt. Mater. Express 2(9) 1176-1185 (2012)

Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation

T. Schröder, M. Walsh, J. Zheng, S. Mouradian, L. Li, G. Malladi, H. Bakhru, M. Lu, A. Stein, M. Heuck, and D. Englund
Opt. Mater. Express 7(5) 1514-1524 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
    [Crossref] [PubMed]
  2. M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
    [Crossref]
  3. M. A. Lourenço, Z. Mustafa, W. Ludurczak, L. Wong, R. M. Gwilliam, and K. P. Homewood, “High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions,” Opt. Lett. 38(18), 3669–3672 (2013).
    [PubMed]
  4. M. A. Hughes, R. J. Curry, and D. W. Hewak, “Determination of the oxidation state and coordination of a vanadium doped chalcogenide glass,” Opt. Mater. 33(3), 315–322 (2011).
    [Crossref]
  5. M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
    [Crossref]
  6. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [Crossref] [PubMed]
  7. M. A. Hughes, R. M. Gwilliam, K. Homewood, B. Gholipour, D. W. Hewak, T.-H. Lee, S. R. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. J. Curry, “On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses,” Opt. Express 21(7), 8101–8115 (2013).
    [Crossref] [PubMed]
  8. D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
    [Crossref]
  9. F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
    [Crossref]
  10. A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
    [Crossref]
  11. J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
    [Crossref]
  12. Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
    [Crossref]
  13. J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
    [Crossref]
  14. J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
    [Crossref]
  15. U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
    [Crossref]
  16. M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
    [Crossref] [PubMed]
  17. T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
    [Crossref]
  18. K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
    [Crossref] [PubMed]
  19. T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
    [Crossref] [PubMed]
  20. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, 2004).
  21. J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
    [Crossref] [PubMed]
  22. S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
    [Crossref] [PubMed]
  23. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
    [Crossref]
  24. R. M. Macfarlane, “Photon-echo measurements on the trivalent thulium ion,” Opt. Lett. 18(22), 1958–1960 (1993).
    [Crossref] [PubMed]
  25. J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
    [Crossref]
  26. U. Walter, “Treating crystal field parameters in lower than cubic symmetries,” J. Phys. Chem. Solids 45(4), 401–408 (1984).
    [Crossref]
  27. M. Lourenço, R. Gwilliam, and K. Homewood, “Eye-safe 2 μm luminescence from thulium-doped silicon,” Opt. Lett. 36(2), 169–171 (2011).
    [Crossref] [PubMed]
  28. D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
    [Crossref]
  29. H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
    [Crossref]
  30. B. G. Wybourne and L. Smentek, Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (Taylor & Francis, 2007).
  31. D. J. Newman and B. Ng, Crystal Field Handbook (Cambridge University, 2007).
  32. J. Mulak and M. Mulak, “Capability of the free-ion eigenstates for crystal-field splitting,” J. Mod. Phys. 2(11), 1373–1389 (2011).
    [Crossref]
  33. K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
    [Crossref]
  34. S. Edvardsson and D. Aberg, “An atomic program for energy levels of equivalent electrons: lanthanides and actinides,” Comput. Phys. Commun. 133(2-3), 396–406 (2001).
    [Crossref]
  35. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
    [Crossref]
  36. D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys. 52(6), 699–762 (1989).
    [Crossref]
  37. J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
    [Crossref] [PubMed]
  38. J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
    [PubMed]
  39. J. Mulak and Z. Gajek, The Effective Crystal Field Potential (Elsevier, 2000).
  40. M. Faucher and D. Garcia, “Crystal field effects on 4f electrons: Theories and reality,” J. Less Common Met. 93(1), 31–44 (1983).
    [Crossref]
  41. J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
    [Crossref] [PubMed]
  42. P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
    [Crossref]
  43. P. Vogl, “Dynamical effective charges in semiconductors: A pseudopotential approach,” J. Phys. Solid State 11(2), 251–262 (1978).
    [Crossref]
  44. A. V. Larin and D. P. Vercauteren, “Approximation of Mulliken charges for the silicon atoms of all-siliceous zeolites,” Int. J. Inorg. Mater. 1(3-4), 201–207 (1999).
    [Crossref]
  45. M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
    [Crossref]
  46. M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
    [Crossref]

2014 (1)

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

2013 (6)

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

M. A. Lourenço, Z. Mustafa, W. Ludurczak, L. Wong, R. M. Gwilliam, and K. P. Homewood, “High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions,” Opt. Lett. 38(18), 3669–3672 (2013).
[PubMed]

M. A. Hughes, R. M. Gwilliam, K. Homewood, B. Gholipour, D. W. Hewak, T.-H. Lee, S. R. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. J. Curry, “On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses,” Opt. Express 21(7), 8101–8115 (2013).
[Crossref] [PubMed]

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

2012 (2)

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

2011 (3)

J. Mulak and M. Mulak, “Capability of the free-ion eigenstates for crystal-field splitting,” J. Mod. Phys. 2(11), 1373–1389 (2011).
[Crossref]

M. Lourenço, R. Gwilliam, and K. Homewood, “Eye-safe 2 μm luminescence from thulium-doped silicon,” Opt. Lett. 36(2), 169–171 (2011).
[Crossref] [PubMed]

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Determination of the oxidation state and coordination of a vanadium doped chalcogenide glass,” Opt. Mater. 33(3), 315–322 (2011).
[Crossref]

2009 (3)

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[Crossref] [PubMed]

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

2008 (2)

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
[Crossref]

M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
[Crossref]

2007 (1)

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

2006 (1)

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

2005 (1)

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

2001 (2)

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

S. Edvardsson and D. Aberg, “An atomic program for energy levels of equivalent electrons: lanthanides and actinides,” Comput. Phys. Commun. 133(2-3), 396–406 (2001).
[Crossref]

1999 (2)

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

A. V. Larin and D. P. Vercauteren, “Approximation of Mulliken charges for the silicon atoms of all-siliceous zeolites,” Int. J. Inorg. Mater. 1(3-4), 201–207 (1999).
[Crossref]

1998 (1)

J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
[Crossref]

1997 (1)

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

1996 (1)

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

1995 (2)

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

1994 (1)

J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
[Crossref]

1993 (2)

M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
[Crossref] [PubMed]

R. M. Macfarlane, “Photon-echo measurements on the trivalent thulium ion,” Opt. Lett. 18(22), 1958–1960 (1993).
[Crossref] [PubMed]

1992 (1)

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

1989 (3)

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys. 52(6), 699–762 (1989).
[Crossref]

1984 (1)

U. Walter, “Treating crystal field parameters in lower than cubic symmetries,” J. Phys. Chem. Solids 45(4), 401–408 (1984).
[Crossref]

1983 (1)

M. Faucher and D. Garcia, “Crystal field effects on 4f electrons: Theories and reality,” J. Less Common Met. 93(1), 31–44 (1983).
[Crossref]

1978 (1)

P. Vogl, “Dynamical effective charges in semiconductors: A pseudopotential approach,” J. Phys. Solid State 11(2), 251–262 (1978).
[Crossref]

1975 (1)

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

1966 (1)

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
[Crossref]

1962 (1)

K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
[Crossref]

Abella, I. D.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
[Crossref]

Aberg, D.

S. Edvardsson and D. Aberg, “An atomic program for energy levels of equivalent electrons: lanthanides and actinides,” Comput. Phys. Commun. 133(2-3), 396–406 (2001).
[Crossref]

Abrosimov, N. V.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Adler, D. L.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Akada, T.

André, S.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Balashov, T.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Baldoví, J. J.

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Barbara, B.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Barklie, R.

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Barklie, R. C.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

Becker, P.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Benton, J. L.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Bertaina, S.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Borrás-Almenar, J. J.

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

Böttger, T.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

Bresch, C.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Cardona-Serra, S.

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Carey, D.

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Carey, J. D.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

Carnall, W. T.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

Citrin, P. H.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Clemente-Juan, J. M.

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Coffa, S.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Collaboration, I.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Cone, R. L.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

Coronado, E.

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Correia, J. G.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Curry, R. J.

Custer, J. S.

J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
[Crossref]

D’Anna, V.

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

De Wachter, J.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Dluhy, P.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Donegan, J. F.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

Eaglesham, D. J.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Edvardsson, S.

S. Edvardsson and D. Aberg, “An atomic program for energy levels of equivalent electrons: lanthanides and actinides,” Comput. Phys. Commun. 133(2-3), 396–406 (2001).
[Crossref]

Elliott, S. R.

Ernst, A.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Faucher, M.

M. Faucher and D. Garcia, “Crystal field effects on 4f electrons: Theories and reality,” J. Less Common Met. 93(1), 31–44 (1983).
[Crossref]

Franzo, G.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

Franzò, G.

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Gaita-Ariño, A.

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Gambarelli, S.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Garcia, D.

M. Faucher and D. Garcia, “Crystal field effects on 4f electrons: Theories and reality,” J. Less Common Met. 93(1), 31–44 (1983).
[Crossref]

Geilhufe, M.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Gholipour, B.

Goodman, G. L.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

Gruber, J. B.

J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
[Crossref]

Gwilliam, R.

Gwilliam, R. M.

M. A. Hughes, R. M. Gwilliam, K. Homewood, B. Gholipour, D. W. Hewak, T.-H. Lee, S. R. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. J. Curry, “On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses,” Opt. Express 21(7), 8101–8115 (2013).
[Crossref] [PubMed]

M. A. Lourenço, Z. Mustafa, W. Ludurczak, L. Wong, R. M. Gwilliam, and K. P. Homewood, “High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions,” Opt. Lett. 38(18), 3669–3672 (2013).
[PubMed]

M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
[Crossref]

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Hagemann, H.

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

Hartmann, S. R.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
[Crossref]

Heasman, K. C.

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

Hergert, W.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Hewak, D. W.

Hoffmann, M.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Homewood, K.

Homewood, K. P.

M. A. Lourenço, Z. Mustafa, W. Ludurczak, L. Wong, R. M. Gwilliam, and K. P. Homewood, “High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions,” Opt. Lett. 38(18), 3669–3672 (2013).
[PubMed]

M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
[Crossref]

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Hughes, M. A.

Jacobson, D. C.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Jenssen, H. P.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

Kaczanowski, J.

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

Karlewski, C.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Klimin, S. A.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Kohoutek, T.

Kozanecki, A.

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

Kurkin, I. N.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Kurnit, N. A.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
[Crossref]

Langouche, G.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Lannoo, M.

M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
[Crossref] [PubMed]

Larin, A. V.

A. V. Larin and D. P. Vercauteren, “Approximation of Mulliken charges for the silicon atoms of all-siliceous zeolites,” Int. J. Inorg. Mater. 1(3-4), 201–207 (1999).
[Crossref]

Lea, K. R.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
[Crossref]

Leask, M. J. M.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
[Crossref]

Leavitt, R. P.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

Ledain, S.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Lee, T.-H.

Libertino, S.

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Linz, A.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

Lourenco, M. A.

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

Lourenço, M.

Lourenço, M. A.

M. A. Lourenço, Z. Mustafa, W. Ludurczak, L. Wong, R. M. Gwilliam, and K. P. Homewood, “High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions,” Opt. Lett. 38(18), 3669–3672 (2013).
[PubMed]

M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
[Crossref]

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Ludurczak, W.

Macfarlane, R. M.

Malkin, B.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Marcus, M. A.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Märkl, T.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Marques, J. G.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Marthaler, M.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Merkle, L.

J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
[Crossref]

Mertig, I.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Milosavljevic, M.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

Miyamachi, T.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Moons, R.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Morrison, C. A.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

Morton, J. J. L.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Mulak, J.

J. Mulak and M. Mulak, “Capability of the free-ion eigenstates for crystal-field splitting,” J. Mod. Phys. 2(11), 1373–1389 (2011).
[Crossref]

Mulak, M.

J. Mulak and M. Mulak, “Capability of the free-ion eigenstates for crystal-field splitting,” J. Mod. Phys. 2(11), 1373–1389 (2011).
[Crossref]

Mustafa, Z.

Needels, M.

M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
[Crossref] [PubMed]

Newman, D. J.

D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys. 52(6), 699–762 (1989).
[Crossref]

Ng, B.

D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys. 52(6), 699–762 (1989).
[Crossref]

Ng, W. L.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Nowicki, L.

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

Ohishi, Y.

Ostanin, S.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Pal, P.

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

Palii, A.

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Penhouet, T.

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

Poate, J. M.

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

Pohl, H.-J.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Polman, A.

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
[Crossref]

Popova, M. N.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Priolo, F.

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

Pytalev, D. S.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Rajnak, K.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

Rana, R. S.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

Riemann, H.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Saeedi, K.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Salvail, J. Z.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Schlüter, M.

M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
[Crossref] [PubMed]

Schön, G.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Schuh, T.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Sealy, B. J.

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

Shao, G.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

Simmons, S.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Stepanov, A.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Stöhr, A.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Sun, Y.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

Suzuki, T.

Tang, Y. S.

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

Thewalt, M. L. W.

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Thiel, C. W.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

Tkachuk, A.

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

van Pinxteren, H. M.

J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
[Crossref]

Vantomme, A.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Vercauteren, D. P.

A. V. Larin and D. P. Vercauteren, “Approximation of Mulliken charges for the silicon atoms of all-siliceous zeolites,” Int. J. Inorg. Mater. 1(3-4), 201–207 (1999).
[Crossref]

Vogl, P.

P. Vogl, “Dynamical effective charges in semiconductors: A pseudopotential approach,” J. Phys. Solid State 11(2), 251–262 (1978).
[Crossref]

Wahl, U.

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Walter, U.

U. Walter, “Treating crystal field parameters in lower than cubic symmetries,” J. Phys. Chem. Solids 45(4), 401–408 (1984).
[Crossref]

Wilson, R. J.

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

Wolf, W. P.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
[Crossref]

Wong, L.

Wortman, D. E.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

Wulfhekel, W.

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Zandi, B.

J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
[Crossref]

Zhang, J.

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

Appl. Phys. Lett. (4)

M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light emitting diodes emitting over the 1.2-1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92(16), 161108 (2008).
[Crossref]

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54 μm luminescence Er3+ implanted in Si,” Appl. Phys. Lett. 61(18), 2181–2183 (1992).
[Crossref]

A. Kozanecki, R. J. Wilson, B. J. Sealy, J. Kaczanowski, and L. Nowicki, “Evidence of interstitial location of Er atoms implanted into silicon,” Appl. Phys. Lett. 67(13), 1847–1849 (1995).
[Crossref]

J. D. Carey, J. F. Donegan, R. C. Barklie, F. Priolo, G. Franzò, and S. Coffa, “Electron paramagnetic resonance of erbium doped silicon,” Appl. Phys. Lett. 69(25), 3854–3856 (1996).
[Crossref]

Comput. Phys. Commun. (1)

S. Edvardsson and D. Aberg, “An atomic program for energy levels of equivalent electrons: lanthanides and actinides,” Comput. Phys. Commun. 133(2-3), 396–406 (2001).
[Crossref]

Dalton Trans. (1)

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach,” Dalton Trans. 41(44), 13705–13710 (2012).
[Crossref] [PubMed]

Inorg. Chem. (1)

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes,” Inorg. Chem. 51(22), 12565–12574 (2012).
[Crossref] [PubMed]

Int. J. Inorg. Mater. (1)

A. V. Larin and D. P. Vercauteren, “Approximation of Mulliken charges for the silicon atoms of all-siliceous zeolites,” Int. J. Inorg. Mater. 1(3-4), 201–207 (1999).
[Crossref]

J. Appl. Phys. (4)

M. Milosavljević, G. Shao, M. A. Lourenco, R. M. Gwilliam, and K. P. Homewood, “Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes,” J. Appl. Phys. 97(7), 073512 (2005).
[Crossref]

J. B. Gruber, B. Zandi, and L. Merkle, “Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F,” J. Appl. Phys. 83, 1009–1017 (1998).
[Crossref]

J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75(6), 2809–2817 (1994).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D. Carey, “The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon,” J. Appl. Phys. 78(6), 3874–3882 (1995).
[Crossref]

J. Chem. Phys. (1)

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90(7), 3443–3457 (1989).
[Crossref]

J. Comput. Chem. (2)

J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions,” J. Comput. Chem. 34(22), 1961–1967 (2013).
[Crossref] [PubMed]

J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and A. Palii, “An updated version of the computational package SIMPRE that uses the standard conventions for Stevens crystal field parameters,” J. Comput. Chem. 35(26), 1930–1934 (2014).
[PubMed]

J. Less Common Met. (1)

M. Faucher and D. Garcia, “Crystal field effects on 4f electrons: Theories and reality,” J. Less Common Met. 93(1), 31–44 (1983).
[Crossref]

J. Lumin. (1)

P. Pal, T. Penhouet, V. D’Anna, and H. Hagemann, “Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts,” J. Lumin. 134, 678–685 (2013).
[Crossref]

J. Mod. Phys. (1)

J. Mulak and M. Mulak, “Capability of the free-ion eigenstates for crystal-field splitting,” J. Mod. Phys. 2(11), 1373–1389 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (2)

K. R. Lea, M. J. M. Leask, and W. P. Wolf, “The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields,” J. Phys. Chem. Solids 23(10), 1381–1405 (1962).
[Crossref]

U. Walter, “Treating crystal field parameters in lower than cubic symmetries,” J. Phys. Chem. Solids 45(4), 401–408 (1984).
[Crossref]

J. Phys. Solid State (1)

P. Vogl, “Dynamical effective charges in semiconductors: A pseudopotential approach,” J. Phys. Solid State 11(2), 251–262 (1978).
[Crossref]

J. Rare Earths (1)

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Nat. Nanotechnol. (1)

S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, “Rare-earth solid-state qubits,” Nat. Nanotechnol. 2(1), 39–42 (2007).
[Crossref] [PubMed]

Nature (2)

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[Crossref] [PubMed]

T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503(7475), 242–246 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Determination of the oxidation state and coordination of a vanadium doped chalcogenide glass,” Opt. Mater. 33(3), 315–322 (2011).
[Crossref]

Phys. Rev. (1)

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photon echoes,” Phys. Rev. 141(1), 391–406 (1966).
[Crossref]

Phys. Rev. B (3)

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11(1), 92–101 (1975).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzo, and S. Coffa, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si,” Phys. Rev. B 59(4), 2773–2782 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Needels, M. Schlüter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B Condens. Matter 47(23), 15533–15536 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and I. Collaboration, “Direct evidence for tetrahedral interstitial Er in Si,” Phys. Rev. Lett. 79(11), 2069–2072 (1997).
[Crossref]

Rep. Prog. Phys. (1)

D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys. 52(6), 699–762 (1989).
[Crossref]

Science (1)

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,” Science 342(6160), 830–833 (2013).
[Crossref] [PubMed]

Solid State Commun. (1)

Y. S. Tang, J. Zhang, K. C. Heasman, and B. J. Sealy, “Lattice locations of erbium implants in silicon,” Solid State Commun. 72(10), 991–993 (1989).
[Crossref]

Thin Solid Films (1)

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1-2), 36–40 (2006).
[Crossref]

Other (4)

P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, 2004).

J. Mulak and Z. Gajek, The Effective Crystal Field Potential (Elsevier, 2000).

B. G. Wybourne and L. Smentek, Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (Taylor & Francis, 2007).

D. J. Newman and B. Ng, Crystal Field Handbook (Cambridge University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 PL spectra of Dy implanted Si excited at 532 nm. The 6H11/26H15/2 transition is shown in (a), the 6H9/26H15/2 and 6F11/26H15/2 mixture of transitions are shown in (b) and (c). To align the transition energy scale, (b) is offset from (a) by 1675 cm−1, and (c) is offset from (b) by 216 cm−1. Peaks identified as corresponding to splitting of the 6H15/2 ground state are identified with arrows, along with the energy of the peaks.
Fig. 2
Fig. 2 PL spectra of Tm implanted Si excited at 532 nm. The 3F4/3H4 mixed state to the 3H6 ground state transition is shown in (a), the 3H53H6 transition is shown in (b). To align the transition energy scale, (b) is offset from (a) by 2588 cm−1.Peaks identified as corresponding to splitting of the 3H6 ground state are identified with arrows, along with the energy of the peaks.
Fig. 3
Fig. 3 Comparison of the measured and fitted ground state energy levels for various symmetries for Dy (a), and Tm (b). Calculation the energy level structure of Dy and Tm in Si up to 10000 cm−1 using CFPs from the ground state splitting (c).
Fig. 4
Fig. 4 Illustration of the electrostatic models used to calculate the crystal field parameters. (a) shows a substitutional site in silicon. A rare earth in tetragonal symmetry is shown in red, with four nearest, and twelve second nearest neighbor Si atoms shown in green and blue, respectively. The parameters of the tetragonal primitive cell, a and b, along with the first and second nearest neighbor distances, L1 and L2, respectively are shown. (b) Shows an interstitial site in silicon with the rare earth shown in red. Four nearest neighbor Si atoms are shown in green which have exactly the same relative position to the RE as the substitutional site for the same a and b primitive cell parameters. Six second nearest neighbors are shown in blue, with four at a distance a and two at a distance b from the RE.

Tables (2)

Tables Icon

Table 1 fitted crystal field parameters for various symmetries of Dy and Tm implanted Si. Units are cm−1.

Tables Icon

Table 2 CFPs from fitted PL lines (exp.), CFPs calculated with the substitutional electrostatic model (SEM), CFPs calculated with the interstitial electrostatic model (IEM) along with parameters of the tetragonal primitive cell, a and b, the first and second nearest neighbor distances, L1 and L2, respectively, and the effective charge (Z)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H= H F + V CF
V CF = k,q B q k C q ( k )
f n αLSJ M J | C q ( k ) | f n α L S J M J = ( 1 ) J M J ( J k J M J q M J )( f n αLSJ M J C ( k ) f n α L S J M J )
A k 0 = 4π 2k+1 i=1 N Z i e 2 R i k+1 Z k0 ( θ i , φ i ) p kq
A k q = 4π 2k+1 i=1 N Z i e 2 R i k+1 Z kq c ( θ i , φ i ) p kq  ( q>0 )
A k q = 4π 2k+1 i=1 N Z i e 2 R i k+1 Z k| q | c ( θ i , φ i ) p k| q | ( q<0 )

Metrics